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Abstract

Natural organic matter (NOM) seriously challenges the drinking water supply. It typically exists as
complex organic substances generated in the natural water ecosystem as part of hydrologic, biological,
and geological cycles. The significant variation, composition, and abundance of NOM in natural water
or wastewater necessitate the implementation of robust and adaptive technologies, particularly in
addressing even more stringent standards of drinking water supply or treated water discharge.
Coagulation is one of the most common processes for water and wastewater treatments. It is highly
desirable to treat feed containing NOM because it prevents the disinfection of by-products formation.
Therefore, current dynamics of NOM in terms of varying compositions and concentrations demand
improvement in handling the coagulation process through optimization of operational parameters
(dosing and the control of pH), application of novel and more effective coagulants, and as a
combination with other processes through process intensification. This review provides a
comprehensive analysis of recent literature on developments of coagulation for NOM removal. The
coagulants are grouped systematically and assessed. Next, enhanced coagulation via process
intensification with other processes (membrane filtration, oxidation, adsorption, and ion exchange) is
discussed. Lastly, the future outlook on research direction on sustainable coagulation process is listed
to support circular and bioeconomy.
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INTRODUCTION

The complex organic material matrix in aquatic bodies is known as natural
organic matter (NOM). Many hydrological, ecological, and geological processes
combine to make it. It is generated naturally in the water bodies as part of microbial,
algal, and other biological activities (classified as autochthonous NOM). It can also be
delivered through water drainage within watersheds, including chemicals released
from terrestrial organisms' breakdown (classified as allochthonous NOM) (Sillanpaa
et al., 2018).

This distinction between autochthonous and allochthonous NOM is crucial. The
specific characteristics of each type demand a unique strategy for effective NOM
removal in drinking water or wastewater treatments. The autochthonous NOM is
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typically (dark-brown colored) and is mainly composed of humic chemicals. Their
composition is dictated by variations of geological and hydrological conditions where
they exist (Hudson et al., 2007). On the other hand, the biological activities of the
"insider" autochthonous NOM (light-colored) are dictated by the metabolism
processes of the biological species implicated. These processes produce soluble
extracellular and intracellular macromolecules like carbohydrates, amino acids,
peptides, enzymes, and toxins, to name a few (Amy, 2008; Her et al., 2004).

Other physical and chemical aspects (such as pH, water chemistry, temperature,
and anthropologic pollution), and biological activities occurring in the water source
tend to affect the dynamics of NOM and its biochemical makeup. As a result, the
volume and composition of NOM may differ significantly from one site to the next
and within the same water body due to seasonal variations impacting natural events
such as floods, droughts, and rainfalls (Hirabayashi et al., 2008). Those phenomena,
as mentioned earlier, increase the abundance of NOM and its spatial and temporal
variations in water bodies worldwide (Matilainen & Sillanpad, 2010).

Pure NOM is generally not hazardous in and of itself, but its presence in bodies
of water is exceedingly dangerous. The presence of NOM in a water body reduces its
potential as potable water by altering the color, taste, and odor, also known as the
organoleptic attributes. Nevertheless, the abundance of NOM in the water body must
be cautioned because of its potential as hazardous inorganic and organic carrier
contaminants, like insecticides and radionuclides (Knauer et al., 2017; Santschi et al.,
2017). It also increased the solubility of anthropogenic hydrophobic compounds in
natural water bodies (Reid et al., 2001). Furthermore, several NOM components,
particularly humic acids (HA) and fulvic acids (FA) shown in Figure 1, can act as bio-
carrier of heavy metals. They form stable complexes with heavy metals via
coordination chemistry, developing organometallic complexes with enhanced
transport, toxicity, and bioavailability (Tang et al., 2014).
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Figure 1 Chemical structure of humic and fulvic acids, main components of
natural organic matter (Gong et al., 2020; Mirza et al., 2011).

NOM can play roles in forming disinfection by-products (DBPs) in the treated
water involving the chlorination process for biological disinfection (Golea et al., 2017;
Goslan et al, 2017). Some DBPs may be carcinogenic compounds, such as
haloacetonitriles, haloacetic acids, or aliphatic halogenated trihalomethanes (Y. Jiang
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etal., 2016;]. Lietal., 2016). Research has revealed that aromatic halo-DBPs have much
higher developmental growth inhibitory effects and toxicity than aliphatic (Liu &
Zhang, 2014; Yang & Zhang, 2013). As a result, NOM removal from drinking water
sources is becoming mandatory and a problematic undertaking requiring dependable,
highly effective, and robust technologies capable of dealing with NOM's high
spatiotemporal variability and rising concentration in aquatic life habitats.

The efficiency of different water treatment procedures is still compromised by
these two major concerns and the complex nature of the NOM substances (Mao et al.,
2017). Together with transparent exopolymeric particles, NOM is widely recognized
as a significant fouling factor in membrane filtration, leading to pore constriction and
creating a loose cake layer atop the membrane surface (X. Cheng et al., 2019; Discart
et al., 2012, 2015). Increasing NOM concentrations necessitates using additional
chemicals or materials (e.g., for physical adsorption or chemical oxidation) in chemical
and material-based processes ending up with an increasing volume of sludge or waste
(Y. Xu et al., 2016). NOM can complicate the process by occupying the active sites in
the adsorption process instead of the targeted pollutants, decreasing the adsorption
efficacy when simultaneously targeting a wide range of pollutants (Qi & Schideman,
2008; Zietzschmann et al., 2014).

In the last two decades, extensive research on water and wastewater treatment
via coagulation has been done. The publication records in the Scopus database from
2001 to 2022, shown in Figure 2 demonstrate that this topic is still gaining some
traction, particularly in the last ten years. The number of published articles grows
exponentially from 64 in 2001 to 1021 in 2021 and is expected to increase further. Those
publications included a total of 7,862 articles; 961 reviews, and the rest were
conference papers, book chapters, and books. Such tremendous research has been
driven by the recent increase in the presence of NOM in water resources, creating an
operational issue for the existing water treatment plants that were designed under
modest NOM content.
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Figure 2. The number of published articles on coagulation for natural organic
matter removal process obtained from the Scopus database accessed on January 29t
2022 using the keywords: natural organic matter, coagulation, humic, water listed on

all fields.
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This paper reviews the literature on coagulation to remove NOM from drinking
water. The mechanism of coagulation using different types of coagulants is first
overviewed. The literature report on the development, application and optimization
of each group of coagulants is detailed because of a broader understanding of their
roles in NOM removal. Next, enhanced coagulations are discussed via integration
with other processes, namely membrane filtration, ion exchange, oxidation, and
adsorption. Finally, a future outlook on sustainable coagulation concerning process
sustainability via circular and bio-based economy is proposed.

MECHANISM OF NOM COAGULATION

Coagulation is a physical-chemical process that uses different chemical agents
(known as coagulants) to stabilize colloids by neutralizing charged particles.
Introducing the coagulant promotes the clumping of colloidal microparticles forming
bigger particles called flocs (see Figure 3A). The agglomeration involves charge
neutralization, trapping, adsorption, and complexation of the targeted particles with
the coagulating agent (Henderson et al., 2006). Because of the considerable variety of
NOM's size and charge characteristics, the mechanism changes significantly according
to the feed, also affected by seasonal fluctuations. As a result, coagulation removal
effectiveness will vary, and flocs of various sizes and shapes will emerge (Jarvis et al.,
2006; Sharp et al., 2006), posing a severe issue in water treatment.

Coagulation has long been used to remove turbidity and color, including
suspension of a stable particle in drinking water treatment. Optimizing the
operational condition has to consider all those purposes since the optimum condition
for turbidity removal can differ from the condition for color and NOM. Coagulation
is accomplished by adding a predetermined coagulant (mostly inorganic, like
aluminum or iron) to the feed water. The metal is then dissociated into the multi-
valent cationic forms (i.e., polyelectrolytes, Fe3* and Al3*), hydrolyzed, and form
positively charged complexes that interact well with the negatively charged colloids
(Figure3B), including NOM (Duan & Gregory, 2003).
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Figure 3. [llustration of the flocculation mechanism and floc size development
in the coagulation process, adapted from (Jarvis et al., 2012).

The key factors influencing coagulation efficiency are the solution pH, the
chemical, and the coagulant dose. pH higher than the coagulant's minimum solubility
(5.8 for ferric chloride and 6.3 for aluminum chloride) results in high molar mass
(HMM) polymers or colloidal/precipitated. Conversely, lower pH leads to medium
and smaller polymers (Yan et al., 2008). Optimizing the coagulant dosing is essential:
overdosing results in excess sludge and low pH, while underdosing leaves residue of
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coagulants in the product water (Ibrahim & Aziz, 2014) since the coagulant did not
form a large enough complex to allow separation.

In addition, the properties of the pollutants, either chemical or molecular, are
also crucial. Enhancing the removal efficiencies of NOM necessitates in-depth
comprehension of its properties and spatiotemporal dynamics of the component and
the amount in the feed (Chiang et al., 2002). They help to assess the reactivity of NOM
components or their surrogates and predict, plan, and implement effective and

sustainable coagulation. It has been widely reported that coagulation is more effective
for larger, hydrophobic humic-like NOM fractions (1-4 kDa) (Yee et al., 2009).

NOM REMOVAL BY COAGULATION

Conventionally, coagulation is generally adequate for removing high molecular
weight organics (Nissinen et al.,, 2001). Variable NOM composition thus poses
challenges to coagulation. The higher charge density of the hydrophobic NOM is more
preferably coagulated than the hydrophilic fraction (Jarvis et al., 2006; Volk et al.,
2000), which necessitates the coagulation optimization for more comprehensive
removals of both hydrophobic and hydrophilic fractions. Therefore, feeding water
with high NOM required an advanced process (Vepsildinen et al., 2009), involving
coagulation.

Metallic-based coagulants

Metal salt coagulants are the most widely used in industry. They are ferric salts
(ferric chloride, ferric and ferrous sulfates) and aluminum salts (sulfate, sodium
aluminate, and chloride)(Bahadori et al., 2013). They are mainly chosen due to their
low cost and effectiveness for turbidity and color removals (Bratby, 2006). When
dissolving inorganic salts into liquid water, metal hydrolysis species are formed from
vigorous hydrolysis of the metallic ions (J.-Q. Jiang & Graham, 1998).

Ferric-based coagulants have recently gained more ground over aluminum-
based due to better NOM removal capacity and in response to the potential risk
associated with the residual aluminum (Flaten, 2001). Ferric salts perform better in
NOM removal (Budd et al., 2004; Umar et al., 2016; Uyak & Toroz, 2007).

Ferric and aluminum-based coagulants work under different mechanisms. In
some cases, when water contains large NOM (MW> 3kDa), coagulation using ferric
chloride (FeCls) is more effective in removing NOM than aluminum sulfate (Al2(SO4)s)
(Matilainen et al., 2005). They were also more effective for intermediate NOM MWs of
1-4kDa. Such advantages are attributed to the higher charge density of ferric than the
aluminum-based coagulants (Song et al., 2002). Ferric salts result in larger floc during
the coagulation (Fitzpatrick et al., 2004). The median size of floc formed by Fe- and Al-
based coagulants were 710 and 450 pm, respectively (Jarvis et al., 2012).

Aluminum-based

Aluminum sulfate (Alum [Al>2(SO4)3] and aluminum chloride [AICI3]) are the
most commonly usedaluminum-based coagulants(Crittenden et al., 2012). Solution
pH is critical during coagulation using an aluminum-based coagulant. When
introduced to water, monomeric aluminum species are formed through hydrolysis
with aluminum hydroxide [Al(OH)s] as precipitates. The dosing rate and the solution
pH affect the distributions of monomeric aluminum and aluminum hydroxide. For
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instance, for dosing 90 mg alum/L, Al(OH)s precipitates were the predominant
species at pH 4.6 (Gregory & Duan, 2001).

The typical pH range for alum hydrolysis is 5.5-7.7. Optimum pH maximizes
solid floc particle formation and minimizes solubilization. Below optimum pH, more
[Al species]- are formed, while [Alspecies]* are generated(Pernitsky & Edzwald,
2006). For pH far from the optimum value (>11 or <3), small particles do not aggregate
and remain in the water due to their low destabilization potential (J. Wang et al., 2016).
The destabilization occurs through charge neutralization. It happened by the
adsorption of the OH on the surface of the negatively charged particles.

Since NOM composes mainly negatively charged functional groups, their
removal is thus more efficient in an abundance of [Al species]*. As reported
earlier, humic acid is highly negatively-charged at pH >4.7; as such, the positively-
charged hydroxide precipitates could destabilize it (Gregory & Duan, 2001) to lower
its solubility and induce precipitation (Pourrezaei et al., 2011). Phenolic and carboxylic
groups could be neutralized by forming Al(OH)?* as a minor component in alum
hydrolysis (Duan & Gregory, 2003).

Under low pH, NOM removal could sometimes occur using metallic-based
coagulants, suggesting that the characteristics of the NOM constituents (an MW,
charge, isoelectric point, etc.) are also significant in affecting NOM removal. Table 1
summarizes the NOM removals using aluminum-based coagulants.

Iron-based

Iron-based coagulants are mainly ferric salts of solid or liquid FeCls and
Fez(SO4)3. They have been used under various dosing rates of 5-150 ppm and 20-
250ppm for FeCls and Fex(SO4)s, respectively (Crittenden et al., 2012). The significant
variations originated from the spatiotemporal variations of the NOM component and
the raw water characteristics. Like other coagulants, pH is also crucial in affecting
iron-based coagulation performance.

The optimum pH ranges from 4.5 to 7 (Jarvis et al., 2012; Park & Yoon, 2009b;
Umar et al., 2016), slightly lower than the Al-based pH of 5.5 to 7.7 (alum). Due to
variations of NOM both in types and concentrations, periodical optimization of pH
and ferric coagulant dosing is required in practice. The NOM content varies largely
over time and must be accommodated by adjusting operational conditions. The
optimum conditions lead to efficient NOM removal, minimizing chemical
consumption, minimizing sludge volume, and enhanced overall performance (Y.
Jiang et al., 2016; Sadri Moghaddam et al., 2010; Yan et al., 2009).

Various chemical species are generated during ferric-based coagulation,
suggesting the complexity of its chemistry. The chemistry is highly affected by the
solution pH and temperature (Ntwampe et al., 2016). In practice, a solubility diagram
shows the distribution of monomeric ferric species under various pH, temperature,
and metal salt concentrations(Calza & Vione, 2015). The diagram guides the
determination of dosage under variable feed conditions.

Table 2 summarizes the recent reports employing ferric-based coagulants for
NOM removals from natural or synthetic water. Many reports showed that ferric-
based was better than the Al-based coagulants in removing NOM (Gonzalez-Torres et
al., 2014; Jarvis et al., 2012; Volk et al., 2000). Nonetheless, ferric-based coagulants were
less effective in removing color and turbidity than aluminum-based coagulants
(Matilainen et al., 2010).
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Titanium and zirconium-based

Titanium (Ti) and zirconium (Zr) have also been applied effectively as
coagulants in the form of zirconium chloride/sulfate[ZrCls/Zr(SO4)2] or titanium
chloride/sulfate [TiCls/Ti(SO4)2](Hussain et al., 2014; J.-Q. Jiang, 2015; Okour et al.,
2009). They have been explored since the late 1930s (Upton & Buswell, 1937) but have
only been recently implemented on a large scale. Their NOM removals performance
was reported to exceed the Al- or Fe-based coagulants.

The performance of TiCls and ZrCls in removing NOM from a drinking water
source was compared with the aluminum sulfate through jar test experiments
(Hussain et al., 2014). ZrCly performed better with minimum HA, FA, and soluble
microbial residual. It was highly efficient to remove medium to low MW fractions of
NOM (0.1-2 kDa). The dissolved organic compound (DOC) and color removals (at pH
4.5) were 61.4% and 92.1% for ZrCly; 44.1% and 84.2% for TiCls, and 40.8% and 89.9%
for Al2(SO4)s, respectively.

The NOM removals from HA-kaolin synthetic water using various coagulants
of TiCly, FeCls, and Alx(SO4)3 were compared (Y. X. Zhao et al., 2014). TiCls was best
with UV2s4 removal of up to 55%, higher than FeCls and Al>(SO4)s with 48% and 41%
removals, respectively. However, its DOC removal (of 55%) was slightly lower than
the ferric coagulant (58%). TiCl4 showed a fast rate of floc aggregation, forming the
largest size but weakest and the worst re-growth after breakage.

The performance of NOM removal in a coagulation/ ultrafiltration process from
synthetic HA-kaolin solution using Ti(SOs)2 was compared with alum and ferric
sulfate (X. Huang et al., 2016). Their dosing was aimed as a pre-treatment of the
subsequent ultrafiltration process. It showed that Ti(SO4)2 resulted in a more compact,
stronger, and larger floc under pH 7-9 than the others generated, resulting in the lost
membrane fouling potential.

Polymeric coagulants

Polymeric coagulants can be natural or synthetic compounds made of monomers
that destabilize solutes to form quickly settled floc. This Section discusses various
polymeric coagulants used for NOM removals.

Synthetic

Fe, Al, Ti, and Zr chlorides or sulfate are used as a coagulant in their salts and in
the forms of inorganic polymeric coagulants. They are formed by partially
neutralizing supersaturated metal salts in a solution using a base before the intended
coagulation.

For example, adding a base (i.e., NaOH) to a solution supersaturated with
aluminum salt rapidly forms amorphous Al(OH); that quickly precipitates. Increasing
the bases lowers the hydroxides' positive surface charge forming large polymeric
species (Duan & Gregory, 2003). A similar mechanism occurred from the pre-
hydrolysis of ferric sulfate and chloride reported by others (X. Huang et al., 2015; Zin
et al., 2015).

The studied metal-ion pre-hydrolysis included polyaluminum chloride (PAC)
(Hu et al., 2015; Z. Wang et al., 2017), polyferric chloride (PFC) (Cao et al., 2011),
polyferric sulfate (PFS) (Zouboulis et al., 2008), as well as polymers of phosphate
aluminum chloride (PPAC), ferric zinc sulfate (PFZS) and aluminum ferric sulfate
(PAFS)(Y. Wei et al., 2016; Zheng et al., 2011; Zhu et al., 2011). Polymers of titanium
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salts have also been explored for NOM removal (Chekli et al., 2017; X. Huang et al.,
2016; Y. X. Zhao et al., 2015).

NOM is removed using inorganic polymer coagulants through complexation,
entrapment, adsorption, and charge neutralization (W. P. Cheng & Chi, 2002; J. C. Wei
et al., 2009). They showed higher NOM and organics removal capacity than the
traditional coagulants such as ferric and aluminum sulfate (J. Q. Jiang & Graham, 1996;
J.-Q. Jiang, 2015). They also performed better for turbidity removal under cold
climates or low alkalinity (W. P. Cheng et al., 2008). However, such an advantage was
demonstrated by metal salt coagulants (i.e., TiCls and FeCl3) when compared with the
polymeric PAC (Gkotsis et al.,, 2017, Park & Yoon, 2009a). Hybrid coagulants
composed of aluminum-based and doped with ion-exchange groups showed
enhanced NOM removal than alum, ferric chloride, and polymeric PAC, specifically
charged and low MW organics (H. Zhao et al., 2016).

A polymer is composed of covalently bonded repetitive monomers. It can
become an anionic polymer, commonly called polyelectrolyte, containing ionizable
sites. A cationic polymer has a positive charge (cationic), while an anionic polymer
poses a negative charge (anionic), and a neutral polymer has no charge (non-ionic).
When hydrolyzed, an organic polymer can destabilize soluble, colloidal, or suspended
species through charge neutralization or bridging, thanks to its large size and charges
(B. Bolto et al., 2002).

NOM removal is primarily achieved through charge neutralization via organic
polymer coagulation (B. A. Bolto et al., 1998; B. Bolto & Gregory, 2007; Matilainen et
al., 2010). For NOM removal, only cationic polyelectrolytes are applied. Common
synthetic cationic polyelectrolytes include polyacrylamide and
polydiallyldimethyl ammonium chloride (pDADMAC). pDADMAC is made of
polymers from epichlorohydrin and dimethylamine. In comparison, natural-based
polymers include starch and chitosan. A predominant humic fraction in NOM is
negatively charged at the pH of natural water, hence could be neutralized by a cationic
polymer through electrostatic interactions. It was reported that under certain
circumstances, the polyelectrolyte size was insignificant in affecting the Coagulation
of HA predominantly NOM (Kvinnesland & @degaard, 2004).

Cationic polyelectrolyte coagulants generally require lesser dosage, produce a
reduced volume of sludge, are less sensitive to pH, and do not produce residue of
unbound metal (Chang et al., 2005; Gao et al.,, 2008). Therefore, they are highly
desirable for water treatment systems. Cationic polyelectrolyte coagulants can offer
25-30% cost savings compared to conventional metallic counterparts (Nozaic et al.,
2001). Table 3 summarizes synthetic polymeric coagulants' performance in removing
NOM or its derivatives.

Despite the widespread use of metallic-based and polymeric coagulants for
NOM removals, they still have various drawbacks. The metallic-based coagulants
include high volumes of sludge production, costs ineffective, the requirement of acid
or base for pH adjustments, and the presence of residual coagulant in the treated water
(Ncibi et al., 2017). In contrast, synthetic polymers could be contaminated during
production and contain harmful residual monomers and by-products of reactions. The
formation of polyelectrolytes during the initial stage could form other auxiliary by-
products that are undesirable (Oladoja, 2016). Therefore, extensive research has been
done to produce biomass-based coagulants as greener alternatives.
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Bio-based

Many bio-based coagulants (mainly proteins and polysaccharides) and
bioresources derivatives (from terrestrial plants, marine species, or microorganisms)
have been explored. They can be used either as the main coagulants or as an aid in
coagulation. The two most common and commercially available are tannin-based and
chitosan (Graham et al., 2008; Heiderscheidt et al., 2016; Oladoja, 2016; Renault et al.,
2009). Bio-based coagulants are preferred because of their renewable nature, non-
toxic, and possibly cost-effective.

Many studies have been reported on applying bio-based coagulants for NOM
removals, as summarized in Table 4. It details the performance and operational
condition of applying biocoagulants NOM and its derivative removal from synthetic
or natural fresh feed water. As shown in Table 4, only limited research is available,
despite vast bio-based polymer developments, which showed their potential as a
coagulant aid. Using bio-based material will promote a more sustainable circular and
bio-based economy concept.

Metallic-organic polymeric coagulants

Combining coagulant types like metallic and polymeric can offer mutual
advantages. It can get benefits from both while mutually overcoming its
shortcomings. Polyferric aluminum chloride and p-DADMAC were explored for
NOM removal. The behavior of the floc formation was closely monitored, namely the
growth, breakage, re-growth, and fractal nature under various shear forces and pH
(C.Sun et al., 2011). Their potential in the aggregating ability for the HA removal from
synthetic HA-kaolin solutions was assessed. It showed that the formed flocs were
more compact and recoverable (i.e., a recovery of 43.3% at pH 5) under acidic
conditions than those in the alkaline HA solutions (with a recovery of 21.3% at pH 8).
They undergo charge neutralization under acidic conditions and physical precipitate
adsorption under alkali conditions.

The hybrid of PAC with chitosan (PAC-chitosan) has been explored for NOM
removals (Ng et al.,, 2013). It showed better efficacy of PAC-chitosan than the
standalone PAC for NOM removal from the synthetic feed. Still, it showed an
insignificant difference for NOM removal from actual natural surface water. The
SUVA value decreased from 5.8 L/m-mg in the synthetic water sample to 2.7 and 4.4
L/m-mg treated with PAC-chitosan and standalone PAC, respectively. Both set of
coagulants reduced the SUVA value of water to ~2.1 L/m-mg. Nonetheless, dosing
the composite PAC-chitosan lowered the total THMFPs from 506 to 199 pg/L in the
natural feed water, much lower than the standalone PAC of 294 pg/L.

Apart from the aforementioned combinations, several others have also been
reported, as listed in Table 4: polyferric aluminum-pDADMAC, polyferric sulfate-
pDADMAC, polyferric chloride-lignin-acrylamide polymer, lignin-pDADMAC-
acrylamide, and zirconium-glycine complex. The findings on the outcome of the
composite coagulants suggest the need to optimize combined coagulants, particularly
on the organometallic combination in the preparation phase, possibly with
optimization software (such as RSM). The assessment can be more focused on the
effect of operational conditions concerning the characteristics of flocs generation,
breakage, re-growth, and fractal structure.
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Electrocoagulation

Electrocoagulation (EC) has been established recently as an alternative to
traditional metallic salt-based coagulation, particularly for the decontamination step
in drinking water production (Malakootian et al, 2010; Wan et al, 2011)
and wastewater treatments (Al-Shannag et al., 2013; Demirci et al., 2015; Hanafi et al.,
2010). It was s applied on an industrial scale for the decontamination of organic, heavy
metals, inorganics, dyes, pathogens, pesticides, etc.

In EC, solid metal, i.e., containing aluminum or iron, is used as anode and,
through electrolysis, dissolved to form the charged ion in the water medium. The
dissolved ions near the anode are hydrolyzed immediately to form coagulating
polymeric iron or Aluminum hydroxides through three primary stages: (i) oxidation
of the anode to form coagulants in-situ, (ii) the destabilization of targeted species, (iii)
the aggregation of the destabilized species forming flocs (Dermouchi et al., 2015). The
fundamental difference with traditional flocculation is that the formation of ions in EC
is done with an electric current from a sacrificing metal anode. The destabilization
phase in stage 2 is crucial. It undergoes a few possible mechanisms (Comninellis &
Chen, 2010): (1) The interaction of electrolyzed ions facilitates compression of the
diffuse double-layer around the charged species. (2) Charge neutralization by the
coagulants. (3) The entrapment of the remaining suspended species by a sludge
blanket formed by bridged flocs.

Unlike traditional (chemical) coagulation, EC delivers coagulant in-situ without
dosing other chemicals. This method made the treatment unit more compact, along
with other side reactions (pH change and hydrogen bubble formation), helping in
destabilizing pollutants (Sarkka et al., 2015; Vepsildinen et al., 2009). Such features
could enhance pollutant removal and lower the excess sludge [115,116] at the expense
of higher energy consumption. The previous report stated that EC efficiency for water
treatment is affected by the overall chemistry of the feed water, including pH,
conductivity, and the abundance of the targeted pollutants (Yildiz et al., 2007). Table
5 summarizes electrocoagulation development for NOM and its derivatives removals
from water. It includes the primary operational condition and the most important
findings.

Coagulation in process integration

The metallic and polymers-based coagulants have long been applied in full-scale
water and wastewater treatments. Yet, they cannot be implemented as standalone
processes and still face a few challenges, mainly technological/ process complications
and cost-sustainability. Some residual coagulants are still present in the product
water; their dosing alters the pH; they incur operational costs and leave a large sludge
volume. The excess sludge production is even more significant in the enhanced
system, where higher dosing of coagulants is required.

Coagulation is often accompanied by various technologies to meet the required
drinking water quality, including membrane (micro, ultra, and nano) filtration
(Discart et al., 2014; Guo et al., 2010; Metsamuuronen et al., 2014), advanced oxidation
processes (Matilainen et al., 2010), ion exchange (B. Bolto et al., 2002), reverse osmosis
(Chun et al., 2017, Malaeb & Ayoub, 2011), and activated carbon adsorption
(Bhatnagar & Sillanpdd, 2017) or simple sand filtration. Some process integration
seems inevitable to meet the more stringent drinking water standard. Process
integration involves more than one technology (Wibisono & Bilad, 2019). They are
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proven approaches in NOM removals. Subsequently, an overview of the integration
of coagulation with other processes is provided.

Coagulation-membrane filtration

Membrane filtration for NOM removal is typically implemented by
incorporating pre-treatment—the latter aims to reduce the membrane fouling
propensity (Dewi et al., 2021). Membrane fouling is the main limitation of membrane
filtration that must be managed to allow a more sustained filtration (Rahmawati et al.,
2021). The ability to manage membrane fouling helps reduce operational costs and
enhance overall NOMs removal. The presence of HA -a component of NOM- is highly
detrimental in promoting membrane fouling in ultrafiltration (UF) (Sutzkover-
Gutman & Hasson, 2010; Yu et al., 2013). In membrane filtration, NOM is retained in
the retentate stream. As such, it may accumulate on the surface of the membrane
blocking the passage of water and causing the membrane fouling. Membrane fouling
must be constantly monitored to ensure sustainability by maintaining the water flux
during the operation (Bilad, 2017). Apart from coagulant dosing, methods for
membrane fouling control have also been extensively reported, including engineered
spacer, tilted panel, patterned membrane, vibrating module, wavy flow channel, and
many others (Barambu et al., 2019, 2021; Bilad et al., 2012; Kharraz et al., 2015; Osman
et al., 2020; Rahmawati et al., 2019, 2021).

Integration of Coagulation (chitosan and aluminum sulfate) and membrane
filtration was investigated for the removal of NOM from natural water (with TOC of
6.4 mg/L and turbidity of 240 NTU) (Bergamasco et al., 2011). It showed that chitosan
coagulation followed by UF resulted in the highest chemical oxygen demand removal
of 91%, much higher than the standalone Coagulation and UF, with removals of 60%
and 86.7%, respectively. The pre-coagulation of the feed with chitosan enhanced the
membrane fouling in the subsequent UF but eventually yielded a higher stable
permeate flux of twice higher than the system pre-coagulated with aluminum sulfate.

Coagulants of PAC and pDMDAAC have been explored to remove HA in a
hybrid coagulation-UF process to produce drinking water (Shen et al., 2017). The
optimum PAC of 1 ppm and pDMDAACof 0.1 ppm doses were used simultaneously.
The results show that the combined dosing was better than the standalone PAC in
lowering the membrane fouling propensity. In addition, combined dosing of
pDMDAAC and PAC enhanced the removal of turbidity and NOM substantially.

A coagulation-filtration process using PAC and the ceramic membrane was
explored to treat river water (M. Li et al., 2011). The removal of DOC by the integrated
processes was more effective than the standalone PAC coagulation or ceramic
membrane filtration, as seen from their poor removals (34-54%). Most interestingly,
the hybrid process worked better under lower hydraulic retention times of 5 min with
a minimum PAC dosing of 15 mg/L instead of 15 mins (for 15-25 mg/L of APC
dosing).

Coagulation can also be integrated with nanofiltration, posing a much smaller
pore than ultrafiltration. When evaluated for bromide removal, neither the standalone
nanofiltration and alum or ferrous sulfate nor the combined process was effective.
However, the hybrid process showed enhanced HA removal with higher flux under
pre-coagulation with ferrous sulfate (Listiarini et al., 2010).
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In another report, chitosan coagulation was integrated with nanofiltration for
water treatment (Ang et al., 2016). However, it was found that the chitosan was
incompatible with the nano-membranes. The finding implies that chitosan effectively
removed the turbidity of the HA synthetic solution by acting through the charge
neutralization mechanism. However, charge neutralization caused severe membrane
fouling by reducing the electrostatic repulsion from the negatively charged membrane
surface. However, a positive impact of a hybrid electrocoagulation and membrane

tiltration for NOM removal was reported better than the standalone filtration or EC
(Chellam & Sari, 2016; Han et al., 2015; W. Sun et al., 2016).

Coagulation-adsorption

Several studies reported an effective combination of coagulation with adsorption
as a hybrid process for removing organic and inorganic pollutants in water treatment.
The most studied adsorbent in hybrid coagulation-adsorption was activated carbon
combined with various coagulants. Other adsorbents were also tested with various
coagulants to remove the removals of NOM and its derivatives (FA, HA, and tannic
acids). They include biochars (Jung et al.,, 2015), nanocrystalline Mg/ Al layered
double hydroxides (Wu et al., 2013), and carbon nanomaterials (Joseph et al., 2012; H.
Wang et al., 2010).

Many adsorbents had been tested for NOM removal. DOC, turbidity, and
UV254 reductions -parameters used to represent NOM- from river water were
achieved by chemical modification of wheat straw-based adsorbent, combined with
two inorganic polymers as coagulants (PFC and PAC) (Zhan et al., 2010). The hybrid
coagulation-adsorption process enhanced turbidity and UV254 removal up to 95.8%
for the PFC- and 94.2% for the PAC-wheat straws, respectively. The standalone
coagulation removal efficiencies were 61.8% and 61.5% for the PFC- and PAC-wheat
straws, respectively.

Coupling powdered activated carbon with enhanced coagulation was effective
in NOM removal and controlling the release of disinfection by-products (DBPs) from
river water (Kristiana et al., 2011). The activated carbon improved NOM removal by
70%, which lowered the formation of DBPs (80-95%) but somehow increased the
formation of brominated DBPs. Brominated DBPs were formed because activated
carbons did not remove bromide ions, allowing them to react and form more toxic
DBP than their chlorinated counterpart.

Advanced Oxidation and Coagulation

Oxidations degrade the pollutants through chemical reactions and are generally
applied before the coagulation [143], which is dominant in affecting NOM removal.
The oxidant (UV, Fenton, and O3-based processes) used and the final and
intermediate oxidation products would then be handled in the subsequent
coagulation. In this context, the properties of those chemicals would affect the
coagulation process, i.e., coagulant type, dosing, pH, and others.

Photocatalytic oxidation catalyzed by titanium dioxide P25 was combined with
alum coagulation for HA removal in drinking water treatment (Ayekoe et al., 2017).
The photooxidation was done using a solar simulator as a UV source for a retention
time of 220 mins. The alum coagulation was first optimized with the optimum pH of
5 and dose of 110 mg/L, resulting in a removal of HA substances of 70%. The hybrid
process increased the HA removal up to 90%.
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Hybrid ozone oxidation and alum-based coagulation were assessed for NOM
and THMFP removal from feed water (Rodriguez et al., 2012). A low hydrophobic
fraction of humic substance and calcium in the natural water led to an interesting
finding. Higher ozone doses lowered the removal of TOC in the coagulation stage,
with maximum removal of 33% achieved by the standalone coagulation. On the
contrary, different findings were reported in the synthetic water containing a higher
concentration of calcium and HA substances. Dosing ozone at 0.25-2.5 mg Os/L
decreased the THMFP by 5-25%. This report highlighted the limitation of employing
synthetic feed as the base to assess coagulation performance, considering the large
variety of actual feed water characteristics.

Despite some discouraging results of combining coagulation with other
processes, process integration remains a compelling option when employed under
optimum conditions.

Coagulation-ion exchange

Ion exchange removes charged organic and inorganic pollutants (B. Bolto et al.,
2002; Humbert et al., 2008). It has also been opted to remove NOM in drinking water
treatment (Kitis et al., 2007; Mergen et al., 2008; Nguyen et al., 2011). Several resins
have been explored: DOWEX 11, DOWEX MSA, IRA938, and IRA958 (Cornelissen et
al., 2008; Sillanpad, 2014). The most applied resin is the magnetic anion exchange resin
(MIEX). MIEX is the chloride of a macroporous polyacrylic matrix. Its typical sizes are
150-180 pm, 20-50% smaller than conventional resins). It is incorporated with
magnetic iron oxide particles to facilitate agglomeration and improve the settling
(Boyer & Singer, 2006; Ding et al., 2012).

Ion exchange can be placed before or after the coagulation. Both placements have
been explored to enhance the overall NOM removal with minimum coagulants input,
DBPs formation, and excess sludge (Humbert et al., 2007; Singer & Bilyk, 2002).

A combination of MIEX and alum was assessed for drinking water treatment
with particular attention to NOM removal over two years (Drikas et al., 2011). As a
comparison, another combination between microfiltration and MIEX was also
evaluated. The results showed that the MIEX pre-treatment facilitated the removal of
a wide NOM range. NOM removals using MIEX-Coagulation were better than MIEX-
microfiltration thanks to the efficacy of coagulation in removing NOM with sizes of >
1000 Da.

Enhanced coagulation was explored by combiningMIEX or powdered activated
carbon (both placed after the coagulation) aimed for DBPs precursors from NOM
removals (Watson et al., 2015). Results showed that Coagulation-MIEX was desirable
for treating water with high bromide content; as such, the combination limited the
brominated DBPs formation. Nevertheless, high iodide content may result in
iodinated DBPs due to poor removal of the ion by MIEX.

Other reports confirmed the benefit of enhancing NOM removal via a
combination of MIEX with Coagulation (J. Xu et al., 2016; Z. Xu et al., 2013). Other
types of resins had also been explored in combination with coagulation (i.e., PWA9
and AMBERLITE PW16)(W. Huang et al., 2015) and a novel suspended ion exchange
process (Metcalfe et al., 2015) for NOM and other organic pollutants removals.
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CONCLUSION

Removing NOM from water is challenging, considering its spatiotemporal
variations in quantity and composition. Therefore, detailed characterization of NOM
(i.e., various fractions, reactivity) is critical to design its removals, primarily to avoid
toxic by-product formation.

Coagulation is widely used for the removal of NOM from drinking water
supplies. The most common coagulants include metal salts, polymers (inorganic and
organic, synthetic or natural), and combinations. The NOM composition and the
natural water properties highly dictate the coagulant selection. Those characteristics
aid in unraveling interaction mechanisms: charge neutralization/precipitation,
adsorption, co-precipitation, and hetero-coagulation (Davis & Edwards, 2014), thus
selecting the most appropriate coagulant. Nonetheless, based on the literature survey,
the report with the highest removal efficiencies was obtained using different
coagulant types of alum, ferric, polymers, bio-coagulants, and electrocoagulation.

Data in Tables 1-5 revealed that Ferripol XL, an iron-based coagulant, was the
most efficient NOM removal, demonstrating up to 80.5% DOC removal. EC
demonstrated high potential by showing DOC and UV254 removals of 73% and 88%,
respectively. It is mainly due to its application on-site (in-situ). The highest HA
removal was achieved by PFS polymeric coagulant with UV254 and DOC removals of
91% and 84%, respectively. From the bio-based coagulant category, the extract of algal
or bacteria showed promising potential to aid alum-based Coagulation in removing
NOM and HA.

Process integration involving coagulation has recently been widely investigated
for enhanced NOM removal, particularly to anticipate more stringent drinking water
regulations. Integration of chitosan-based coagulation and UF offered substantially
high chemical oxygen demand reduction (91%), much higher than the standalone
coagulation (60%), and the standalone UF (86.7%) is highly prone to membrane
fouling. Moreover, a hybrid of photocatalytic/coagulation showed enhanced removal
of HA of up to 90%. Nevertheless, full-scale implementation of photocatalytic will be
hard to achieve considering the light source required in the oxidation process.

RECOMMENDATION

Many reports showed inconsistent findings when using synthetic and read feed
waters to evaluate the coagulation performance. It makes extrapolation of results in a
controlled experiment using synthetic feed inadequate to represent the actual feed.
The situation is worsened considering the highly dynamic nature of NOM in actual
water. Judging from those findings, assessing the coagulation (type and optimum
condition) is best done using the actual feed before implementation.

Future coagulation process developments must account for both the
sustainability concept of both and bioeconomy. For the former, emphasis can be given
to intensifying the impact (dosing less with enhanced efficiency) or developing a novel
type of cost-effective coagulant that allows easy recovery as pioneered elsewhere
(Davis & Edwards, 2014; Keeley et al., 2012, 2016). For the latter, polymeric bio-based
coagulants, algae, plants or microorganisms seem attractive. They must be
competitive with chemical-based coagulants but with enhanced eco-friendliness and
cost-effectiveness. Some biobased coagulants have shown promising efficacy in NOM
removal as demonstrated by a few earlier results.
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