

Practicing Sustainable Agriculture for Meeting Demand of Quality Foods

Zainuri^{1*}, & Taslim Sjah²

¹Faculty of Food Technology and Agro Industry, University of Mataram, Jalan Majapahit No. 62, Gomong, Kota Mataram, Indonesia 83125.

²Faculty of Agriculture, University of Mataram, Jalan Majapahit No. 62, Gomong, Kota Mataram, Indonesia 83125.

Email Korespondensi: zainuri.ftp@unram.ac.id

Abstract

It is appear that there is the limited understanding of how sustainable agricultural practices can be effectively linked to the production of quality foods that meet evolving market and consumer demands, as existing studies tend to address sustainability and food quality in isolation. This paper highlights the importance practicing sustainable agriculture and meeting demand of quality foods for the good of whole society. This study applied a secondary data collection method to identify pathways for meeting the demand for quality foods through the practice of sustainable agriculture, using a qualitative descriptive analysis supported by thematic synthesis of policy documents, scientific literature, and sectoral reports. The study found that Sustainable practices enhance soil fertility and structure, reduce chemical residues, and promote balanced nutrient cycling, which collectively improve the nutritional value and safety of food products. In addition, environmentally sound farming systems strengthen resilience to climate variability and reduce production risks, thereby supporting consistent food supply. From a socio-economic perspective, sustainable agriculture can increase farmers' incomes through efficiency gains, reduced input costs, and access to premium markets for quality foods. The study highlighted that adopting sustainable agriculture is not only essential for environmental protection but also critical for ensuring the availability of high-quality foods that meet consumer expectations and support food security. Policy support, farmer capacity building, and market incentives are identified as key factors in accelerating the transition toward sustainable food systems. This study contributes by integrating sustainable agriculture practices with quality food demand through a systematic synthesis of secondary evidence, providing conceptual and policy-relevant insights to support the development of sustainable, quality-oriented food systems.

Keywords: Sustainable Agriculture; Quality Foods; Soil Fertility; Food Security; Environmental Sustainability.

How to Cite: Zainuri, Z., & Sjah, T. (2025). Practicing Sustainable Agriculture for Meeting Demand of Quality Foods. *Empiricism Journal*, 6(4), 2462-2473. <https://doi.org/10.36312/srq5ev84>

<https://doi.org/10.36312/srq5ev84>

Copyright© 2025, Zainuri & Sjah

This is an open-access article under the [CC-BY-SA](#) License.

INTRODUCTION

Agriculture has been continuously being developed in developing countries, including Indonesia (Brooks, 2010; FAO, 2002), as well as in developed countries (Brooks, 2010). The development of agriculture must be implemented in increased speed, to meet the pace of food demand of world population. The development of agriculture has shown some successes, particularly in increasing agricultural production. Table 1 indicates production of several agricultural main commodities (called as strategic commodities) in Indonesia in recent years.

Table 1. Production of strategic commodities in Indonesia, 2022-2023

Commodity	Production (million tons)	
	2022	2023
Rice	54.785	53.626
Corn	22.357	19.561
Chili	1.544	1.504
Onion	0.189	0.181

Source: (BPS, 2024)

The high agricultural productions were not always accompanied with success in other aspects of agriculture. For example, the number of Indonesian, including farmers, staying below poverty is considerably high at about 23.85 million people in March 2025 (BPS, 2025). People's life is also threatened by decreasing individual farm size from year to year as a

result of farm land fragmentation due to heritage process from parents to more (than one) children (Poulton & Wiggins, 2005). This decreasing land size threatens the sustainability of farm operation.

The focus of agricultural development is not only production but also and more importantly on income of many related community groups, including agricultural producers (Minister of Agriculture, 2014), other people doing related businesses, and consumers. With this focuses, it is expected that this development reduces hunger and achieve food security (Minister of Agriculture, 2014) and improved nutrition, as aimed in Sustainable Development Goals (SDGs) number 2, as well as alleviating poverty as in SDGs number 1 (UNDP, 2015). However, these aims have not been fully achieved. In particular, the aims on reducing poverty and improve food security still currently become the main target of agricultural development in Indonesia (Minister of Agriculture, 2017).

Therefore, the development should be done in better and integrated way, such that it can have more positive impact than the current practice, including on production and income of people running the business of agriculture. In this view, supply chain and its management can help. Supply chain management (SCM) can have higher impact by implementing so-called primary and secondary activities that add value while reducing cost, which both create margin, for all parties involved. Adding value in SCM is achieved through meeting demand of consumers as just as they want, such that consumers are willing to pay at their satisfaction (Dunne, 1999; Pujawan & Mahendrawathi, 2010).

One of the ways to have a higher impact of agricultural development is through agritourism. This high possible impact of agritourism on increasing livelihood of community is aware by the government of Indonesia, so that it is encouraged (Minister of Agriculture, 2015). Many other governments in the world also make similar movement for developing agritourism, such as in United States (Blacka et al., 2009; Walker, 2009), India (Goel, 2018), Botswana (Department of Tourism, 2016), Indonesia, Italy, Switzerland, and many more (Wikipedia, 2016). In essence, agritourism or agrotourism is a practice attracting people to visit lands on which all agricultural activity is main activities, and other activities complements to attract visitors who have the purposes of leisure, recreation, entertainment, and education.

The research problem for this study is the limited understanding of how sustainable agricultural practices can be effectively linked to the production of quality foods that meet evolving market and consumer demands. While sustainable agriculture is widely promoted for its environmental and social benefits, and quality food is increasingly emphasized in food security and market discussions, existing studies tend to address these two domains in isolation. This separation has resulted in a lack of integrated frameworks and practical guidance for aligning sustainability-oriented farming practices with quality-oriented food systems. This paper highlights the importance practicing sustainable agriculture and meeting demand of quality foods for the good of whole society. Therefore, this paper could benefits a wide range of communities and disciplines.

METHODS

This study applied secondary data collection method (Bryman, 2016; Jackson, 1988; Sjah, 2011) to lead the ways to meeting the demand of quality foods through practicing sustainable agriculture. The secondary data are explored to enable the integration of diverse empirical and conceptual evidence across regions and production systems, allowing the study to identify broader patterns in sustainability practices and food quality outcomes. Secondary data were obtained from multiple authoritative sources, such that the research aims can be achieved, meaning that the selection of secondary data followed clear inclusion criteria of relevant and comparable. Searched data included descriptions of sustainable agricultural practices such as crop diversification, organic and integrated nutrient management, reduced chemical input use, and integrated pest management. Information related to food quality outcomes, including nutritional value, food safety standards, and chemical residue levels, was also extracted, along with data on environmental impacts such as soil health, biodiversity conservation, and water resource management. The extracted data were organized into thematic categories aligned with the objectives of the study, allowing for structured synthesis of sustainability, productivity, and food quality dimensions.

Data sources were selected using three main criteria: (1) relevance to sustainable agriculture practices, food quality attributes, and market demand; (2) reliability, as indicated by publication by peer-reviewed journals, official government agencies, international organizations, or recognized research institutions; and (3) timeliness, prioritizing recent publications to capture current policy directions and market trends. The selected data include scientific articles, policy documents, statistical reports, and sectoral studies that collectively support a comprehensive analysis of the link between sustainable agriculture and the production of quality foods. Validation in the study is conducted through source triangulation and consistency checking approach. Information derived from secondary data sources was cross-validated by comparing findings across multiple types of documents, including peer-reviewed journal articles, government policy reports, and publications from international organizations. Conceptual consistency was assessed by examining the convergence of evidence on key themes related to sustainable agriculture practices, food quality attributes, and market demand.

Data analysis relied on qualitative content analysis and comparative analysis techniques. Qualitative content analysis was used to identify recurring themes, patterns, and conceptual relationships within textual data from academic literature and institutional reports (Schreier, 2012). This method facilitated an in-depth understanding of how sustainable agriculture practices influence food quality and contribute to long-term food system resilience. Comparative analysis was then applied to examine similarities and differences in reported outcomes across studies, regions, and production systems, particularly in relation to productivity, environmental performance, and food quality under sustainable versus conventional agricultural practices. This approach enabled the integration of diverse findings into a coherent analytical narrative supported by empirical evidence.

Validation of the study is conducted through source triangulation and consistency checking approach. Information derived from secondary data sources was cross-validated by comparing findings across multiple types of documents, including peer-reviewed journal articles, government policy reports, and publications from international organizations. Conceptual consistency was assessed by examining the convergence of evidence on key themes related to sustainable agriculture practices, food quality attributes, and market demand.

HASIL DAN PEMBAHASAN

This section starts with the descriptions of agricultural development in Indonesia. This is meant to connect the discussions that follow into Indonesia context, although the principles of providing quality foods are the same world widely. This is followed by the discussions on the principles of sustainable agriculture and quality foods, and the connections between the two, before the conclusions are drawn.

Agricultural development in Indonesia

The need for Indonesia to develop agriculture is not only because of suitable agricultural assets that Indonesia has, but also of important roles of agriculture in country (Minister of Agriculture, 2014; Soekartawi, 1995). Agriculture plays important roles including creating jobs contributing to national income, contributing to export, controlling inflation, producing bioenergy and herbals, producing main foods, and supplying raw materials for industry (Krishnamurthi, 2008; Masyhuri, 2008).

Current strategic issues in agricultural development in Indonesia are sufficient production, product competitiveness, food diversification, and farmer income (Minister of Agriculture, 2014, 2015). Indonesia needs to increase production so that it meets domestic demand and reduces import. The targeted commodities (or frequently called strategic commodities) for Indonesia are rice, corn, soybean, cane, beef, chili, and onion. Moreover, the targets are not only in providing production sufficiently but also achieving self-sufficient and secure with the foods and everyone in country has access to the food, and finally they consumed with right quantity and quality. In other words, Indonesia wants to achieve food security (Minister of Agriculture, 2015, 2017). This food security target is the same as has also been targeted in SDGs number 2, i.e. to end hunger, achieve food security and improved nutrition and promote sustainable agriculture (DESA-DSD, 2015; UNDP, 2015).

Indonesia also needs to increase product competitiveness, since Indonesia is now facing competition from international products in domestic market, as well as needing to compete in global market. When Indonesia's products have competitiveness then it needs to improve to higher level, otherwise competitors will take over the position. Indonesia's product competitiveness should be accompanied by provision of infrastructures for agriculture and its products, such that it reduces cost, increase efficiency, and finally increase competitiveness.

Indonesian high consumption on rice and wheat brings high risk, so that Indonesia needs to diversify their foods and should not depend only on rice or wheat (Badan Litbang Pertanian RI, 2005; Minister of Agriculture, 2015). Diversification of agricultural production and products reduces risk and can also reduce cost for crop productions as some cost component can be shared amongst the crops grown (Corselius, Simmons, & Flora, 2003; Hardaker, Huirne, & Anderson, 1997; T. Sjah, Cameron, & Woodford, 2006).

The final and classic strategic issue in Indonesia's development is income and welfare of agricultural producers. While producers have given a lot of support in providing foods and the sorts for the country, the development has not given enough income or welfare to farmer, with some 18 million Indonesian (mostly farmers) are still below poverty line. Farmer income is targeted to at least meeting minimum family basic needs and considered fair for them (Minister of Agriculture, 2017).

To handle these issues, the government of Indonesia focuses agricultural development on: (1) developing strategic commodities; (2) increasing competitiveness of local products in domestic and international markets; and (3) increasing income and welfare of agricultural producers. These focuses of agricultural development is meant to lay foundation of establishing integrated agricultural system in the future (Minister of Agriculture, 2017). One of the policies to handle the issues is by practicing agriculture in sustainable way (Darwanto, 2008; Masyhuri, 2008; Minister of Agriculture, 2015).

Another policy is to develop agriculture in integration with other activities, for example with tourism activity. Advancing tourism development together with agricultural development has been prioritized to several provinces in Indonesia, including in Nusa Tenggara Barat (President of RI, 2011). Agritourism is seen as having potential to create jobs and provide incomes for many community groups, so that the (almost) whole community benefit from it.

Principle of sustainable agriculture

Sustainable agriculture is a practice that meets three objectives, i.e. economic, social, and environment altogether. Overall goal of sustainable agriculture is continuously maintaining or increasing the health of the land and the people. Agriculture that is sustainable economically provides profit, socially gives benefits to farmers and community, and environmentally conserving the agricultural natural resources (Pretty, 2008; Sullivan, 2003). Indicators for three dimensions of agricultural development are described as follows.

Indicators for economic sustainability include: increasing savings of the farmers consistently; decreasing debt of the farmers consistently; profits of farming is earnable consistently from year to year; less purchasing of off-farm feed and fertilizer; and decreasing financial support from government (Sullivan, 2003).

Socially, agriculture is sustainable when community are happy and accept the development of agriculture. The acceptance of agricultural development practice is due some benefits, including that farming supports other businesses and families in the community, such that economic activity circulates, the number of rural families is not decreasing, and people are happy to work within agricultural jobs (Sullivan, 2003).

Environment sustainability occurs when the environment is conserved. Agriculture conserves land as it applies nature-based activity rather than factory-based activity. Indicators for this sustainability include can be seen from no bare ground or lots of various vegetation; clean water flows in the farm's ditches and streams, where fish can live and grow; and lots of wildlife (Sullivan, 2003).

As said, the three aspects of agricultural sustainability must applied as an integration, to achieve all the goals. Sullivan (2003) highlights how to apply the three principles. The practices to achieve the three goals simultaneously include covering farm soil throughout the

year, avoid moldboard plowing at all costs, diversify crops and livestocks, rotating crops, and use cover crops and green manure.

Covering farm soils reduces temperature extremes, increases water penetration and enhances soil aeration, maintains and prevents soil erosion (Sullivan, 2003). These all bring economic benefits for these reduce as well as environmental benefits for creating healthy or better environment for agricultural production and reduce production risk. The end result of these economic and environmental benefits is that the practice will also sustain socially.

Over plowing of the land will damage the soil so that it cannot stop erosion and cannot cycle water and mineral properly and then causes the growth of plants and animals is not optimal. Therefore, in sustainable agriculture tillaging is not recommended, rather to apply ridge till, zone till, minimum till (Sullivan, 2003). This practice reduces cost of production and also increase productivity of the land.

Farm diversification is considered as way of reducing risk in a business. A failure in one crop is not usually happened at the same as failures in other crops. Yet, this is not the only benefit of crop diversification. It also reduces cost as some cost components that can be shared amongst the crops and livestock. Also, livestock waste becomes fertilizers for crops, so it save some costs (Sullivan, 2003).

Crop rotations break the life cycles of weeds and pests, provide fertilizers to crops, and prevent buildup of pests and weeds. With crop rotations the life cycles of pests and weeds are disturbed and then broken (Liebman & Dyck, 1993). Fertilizers for the crops add up from one crop kind, for example from legume, to other crops. As crops are rotated, it also prevents buildup of insects and weeds. Crop rotations eventually reduce soil erosion and increase soil quality (Brady & Weil, 2016). Therefore, crops rotations brings sustainability in the aspect of environmental, economic, and social. They improve condition of environment for plant growth, reduce cost and increase income for the entrepreneurs and other groups.

The use of cover crops and green manure creates favorable condition for the crops naturally. The use does not only maintain the healthy condition of soil but more importantly improve the condition. Cover crops conserve soil, while green manure particularly provides nutrients for the soil. At the end, productivity of crops increase, benefits the growers and other communities (Sullivan, 2003).

Quality Foods

The concept of quality foods has gained increasing prominence in academic discourse, policy debates, and consumer awareness, particularly in the context of sustainable agriculture and food system transformation. Quality foods are no longer understood merely as products with desirable sensory attributes such as taste, appearance, or freshness, but as foods that meet broader criteria related to nutrition, safety, sustainability, and ethical production. This multidimensional understanding of food quality is especially relevant in developing countries, where food systems face the dual challenge of meeting growing demand while addressing malnutrition, environmental degradation, and socioeconomic inequality.

From a nutritional standpoint, quality foods are defined by their ability to contribute positively to human health through adequate and balanced nutrient content. Foods rich in essential macronutrients and micronutrients play a crucial role in addressing undernutrition and micronutrient deficiencies, which remain prevalent in many developing regions. The Food and Agriculture Organization emphasizes that food quality must be assessed not only in terms of caloric availability but also dietary diversity, nutrient density, and contribution to healthy diets (FAO, 2017). Sustainable agriculture practices, such as diversified cropping systems and soil fertility management, are closely linked to improved nutritional quality by enhancing the nutrient content of food crops and reducing reliance on highly processed foods.

Food safety represents another critical dimension of quality foods, particularly in developing countries where foodborne illnesses pose significant public health risks. Quality foods must be free from biological contaminants, chemical residues, and physical hazards that may compromise consumer health. Inadequate regulation, excessive pesticide use, and poor post-harvest handling often undermine food safety in smallholder-based agricultural systems. Sustainable agriculture addresses these challenges by promoting integrated pest

management, reduced chemical input use, and better farm-level practices, thereby improving food safety outcomes (FAO & WHO, 2019). Consequently, quality foods are closely associated with production systems that prioritize safety throughout the food value chain.

Environmental sustainability has become a defining attribute of quality foods in contemporary food systems. Foods produced through sustainable agricultural practices are increasingly perceived as higher quality because they minimize negative environmental externalities while safeguarding long-term productivity. Practices such as soil conservation, efficient water use, biodiversity protection, and climate-resilient farming systems contribute to maintaining ecosystem services that underpin food production (Pretty et al., 2018). In developing countries, where agriculture is often highly dependent on natural resources, the environmental dimension of food quality is particularly important for ensuring the resilience and sustainability of food systems.

Quality foods are also embedded in social and ethical considerations, which are gaining attention in both domestic and global markets. Ethical dimensions of food quality include fair labor conditions, equitable income distribution, and support for smallholder farmers. In many developing countries, small-scale producers dominate agricultural production but face structural constraints such as limited access to markets, finance, and technology. Sustainable agriculture initiatives that strengthen farmer organizations, improve value chain integration, and promote fair trade practices enhance not only production outcomes but also the perceived quality of food products from a social perspective (OECD, 2020). Thus, food quality is increasingly linked to the social conditions under which food is produced.

Consumer perception plays a pivotal role in shaping demand for quality foods, even though many quality attributes are not directly observable. Sensory characteristics such as freshness and taste remain important, but consumers are increasingly concerned about health, safety, and environmental impacts. In response, certification schemes and labeling systems have emerged as mechanisms to communicate food quality attributes and reduce information asymmetry between producers and consumers. Labels such as organic, eco-friendly, and geographical indications signal compliance with specific quality standards and are particularly relevant for smallholders seeking market differentiation (Grunert, Hieke, & Wills, 2014). In developing countries, however, access to certification remains limited, highlighting the need for supportive policies and institutional frameworks.

Institutional and governance frameworks play a central role in defining and regulating quality foods. Governments and international organizations establish food quality and safety standards that influence agricultural practices, processing methods, and market access. The Codex Alimentarius provides internationally recognized benchmarks that guide food safety and quality regulation, facilitating trade while protecting consumer health (FAO & WHO, 2019). For developing countries, alignment with international standards presents both opportunities and challenges, as compliance can improve market access but may also impose additional costs on producers. Strengthening institutional capacity is therefore essential to ensure that quality standards are inclusive and supportive of sustainable agricultural development.

Quality foods are also closely linked to economic performance and value addition in agricultural systems. Foods that meet high quality standards often command premium prices and enjoy greater market stability. For smallholder farmers, producing quality foods through sustainable practices can enhance income and resilience, particularly when supported by appropriate infrastructure, extension services, and market linkages. However, without adequate support, the pursuit of quality may exacerbate inequalities by excluding resource-poor producers from high-value markets. Addressing these constraints is critical to ensure that quality-oriented food systems contribute to inclusive development.

In the broader context of sustainable development, quality foods are integral to achieving resilient and equitable food systems. The emphasis on food quality aligns with global objectives related to food and nutrition security, environmental sustainability, and responsible consumption and production. By promoting foods that are nutritious, safe, environmentally sustainable, and ethically produced, sustainable agriculture offers a pathway to meet growing food demand without compromising future generations. Quality

foods, therefore, should be viewed not merely as a market attribute but as a strategic outcome of sustainable agricultural development.

In brief, quality foods represent a holistic and evolving concept that integrates nutritional adequacy, food safety, environmental sustainability, ethical production, and consumer trust. In developing countries, where agriculture remains a cornerstone of livelihoods and food security, strengthening the production and accessibility of quality foods is essential. Achieving this goal requires coordinated efforts among farmers, policymakers, researchers, and market actors, supported by enabling policies, institutional capacity, and technological innovation. Prioritizing quality foods within sustainable agriculture is thus fundamental to building food systems that are productive, resilient, and socially equitable.

Quality Foods in the Context of Sustainable Agriculture

The growing global emphasis on sustainable agriculture is closely associated with increasing demand for quality foods that support human health, environmental integrity, and social well-being. Quality foods are no longer defined solely by sensory attributes such as taste, color, or freshness, but by a broader set of characteristics that include nutritional adequacy, food safety, sustainability of production processes, and ethical considerations across the food value chain. This expanded understanding of food quality is particularly relevant in developing countries, where food systems face the dual challenge of meeting rising demand while addressing persistent issues of malnutrition, environmental degradation, and rural poverty.

From a nutritional perspective, quality foods are those that contribute positively to dietary diversity and nutrient intake, providing sufficient macronutrients and essential micronutrients required for healthy living. The Food and Agriculture Organization emphasizes that food quality must be assessed in relation to its contribution to healthy diets, rather than calorie availability alone (FAO, 2017). In many developing regions, diets remain heavily dependent on staple foods with limited nutrient diversity, leading to widespread micronutrient deficiencies. Sustainable agricultural practices, such as crop diversification, soil fertility management, and integration of legumes and horticultural crops, have been shown to improve the nutritional quality of food systems by enhancing both food availability and dietary diversity.

Food safety constitutes a fundamental component of quality foods and remains a major public health concern, particularly in low- and middle-income countries. Quality foods must be free from biological contaminants, chemical residues, and physical hazards that pose risks to consumers. Excessive pesticide use, poor post-harvest handling, and weak regulatory enforcement frequently compromise food safety in smallholder-based agricultural systems. Sustainable agriculture contributes to improved food safety outcomes by promoting integrated pest management, reduced reliance on synthetic agrochemicals, and improved farm-level management practices (FAO & WHO, 2019). As a result, food quality is increasingly associated with production systems that prioritize safety and risk reduction throughout the food supply chain.

Environmental sustainability has become an integral criterion in the assessment of food quality. Foods produced through environmentally sound agricultural practices are increasingly perceived as higher quality due to their lower ecological footprint and contribution to long-term resource conservation. Practices such as soil conservation, efficient water use, biodiversity protection, and climate-resilient farming systems help maintain ecosystem services that underpin food production (Pretty et al., 2018). In developing countries, where agricultural livelihoods are closely tied to natural resource availability, the environmental dimension of food quality is especially critical for ensuring long-term food system resilience.

In addition to nutritional, safety, and environmental dimensions, quality foods are increasingly evaluated through social and ethical lenses. Ethical considerations include fair labor conditions, equitable income distribution, and support for smallholder farmers who constitute the backbone of food production in many developing countries. Sustainable agriculture initiatives that strengthen farmer organizations, promote inclusive value chains, and improve market access enhance the social quality of food products by ensuring that production benefits are shared more equitably (OECD, 2020). Consequently, food quality is

not only a matter of product attributes but also reflects the social conditions under which food is produced and distributed.

Consumer perception plays a decisive role in shaping demand for quality foods, even though many quality attributes are not directly observable at the point of purchase. While freshness, taste, and appearance remain important, consumers are increasingly concerned about health impacts, safety, and environmental sustainability. Certification and labeling schemes have therefore become important mechanisms for communicating food quality attributes and reducing information asymmetry between producers and consumers. Labels such as organic, eco-friendly, and geographical indications signal compliance with specific quality standards and support market differentiation, particularly for smallholder farmers engaged in sustainable agriculture (Grunert et al., 2014). However, limited access to certification systems remains a constraint in many developing countries, underscoring the need for institutional support.

Institutional and governance frameworks play a central role in defining, regulating, and promoting quality foods. Governments and international organizations establish standards that influence agricultural practices, processing methods, and market access. The Codex Alimentarius provides internationally recognized benchmarks for food quality and safety, facilitating trade while protecting consumer health (FAO & WHO, 2019). For developing countries, compliance with such standards presents opportunities for market expansion but also challenges related to cost, technical capacity, and enforcement. Strengthening institutional capacity and policy coherence is therefore essential to ensure that quality standards support, rather than exclude, small-scale producers.

Quality foods are also closely linked to economic performance and value addition within agricultural systems. Products that meet high quality standards often command price premiums and enjoy greater market stability. For smallholder farmers, adopting sustainable practices to produce quality foods can enhance income, resilience, and long-term viability. However, without adequate access to technology, finance, and extension services, the pursuit of quality may exacerbate inequality by favoring larger or better-resourced producers. Addressing these structural constraints is critical to ensuring that quality-oriented food systems contribute to inclusive and sustainable development.

In the broader context of sustainable development, quality foods represent a strategic outcome of sustainable agriculture rather than a purely market-driven attribute. The emphasis on food quality aligns with global development objectives related to food and nutrition security, environmental sustainability, and responsible consumption and production. By promoting foods that are nutritious, safe, environmentally sustainable, and ethically produced, sustainable agriculture provides a pathway to meet growing food demand while safeguarding natural resources and social well-being. Thus, quality foods should be understood as a central pillar in the transformation of food systems toward sustainability.

How Practicing Sustainable Agriculture Meets the Demand for Quality Foods

Practicing sustainable agriculture provides a comprehensive and long-term pathway to meeting the growing demand for quality foods by integrating nutritional adequacy, food safety, environmental sustainability, and socio-economic considerations within food production systems. Unlike conventional agricultural systems that primarily emphasize yield maximization through intensive use of external inputs, sustainable agriculture focuses on ecological balance, efficient resource use, and resilience. This integrated approach ensures that food systems are capable of producing foods that are not only sufficient in quantity but also superior in quality and aligned with evolving consumer expectations and public health needs (FAO, 2018; Pretty et al., 2018).

Sustainable agriculture contributes to improved nutritional quality of foods through diversified and ecologically based farming practices. Techniques such as crop rotation, intercropping, agroforestry, and integration of legumes enhance soil fertility and nutrient cycling, which directly influence crop nutrient uptake. Soils rich in organic matter and biological activity improve the availability of essential micronutrients, leading to food products with better nutritional profiles. Furthermore, diversified farming systems increase the supply of nutrient-dense foods, including fruits, vegetables, and pulses, thereby supporting dietary diversity and improved nutrition outcomes (FAO, 2017). In this way, sustainable agriculture

addresses food quality not only at the production level but also at the dietary and consumption level.

Food safety is another critical dimension through which sustainable agriculture meets the demand for quality foods. Excessive use of synthetic pesticides and chemical fertilizers in conventional agriculture has raised concerns regarding chemical residues and food contamination. Sustainable agriculture promotes integrated pest management, biological control, and organic or low-input nutrient management, which significantly reduce the risk of harmful residues in food products. Improved on-farm practices, including better hygiene, appropriate harvesting methods, and proper storage, further contribute to minimizing microbial contamination along the food value chain (FAO & WHO, 2019). As consumers increasingly prioritize health and safety, sustainably produced foods are widely perceived as safer and more reliable.

Environmental sustainability underpins the long-term capacity of agriculture to produce quality foods. Sustainable agricultural practices protect and enhance natural resources such as soil, water, and biodiversity, which are essential for maintaining consistent food quality over time. Soil conservation practices reduce erosion and degradation, ensuring stable yields and product quality, while efficient water management reduces pollution and enhances crop resilience. Biodiversity conservation supports ecosystem services such as pollination and natural pest regulation, which are crucial for both yield stability and food quality (Pretty et al., 2018). By safeguarding the ecological foundations of agriculture, sustainable practices ensure that food quality can be maintained across seasons and generations.

Sustainable agriculture also addresses the social and ethical dimensions increasingly associated with quality foods. In many developing countries, smallholder farmers play a central role in food production but face constraints related to income instability, limited market access, and resource degradation. Sustainable agriculture initiatives often emphasize inclusive value chains, fair labor practices, and strengthened farmer organizations, which improve livelihoods and enable producers to invest in quality-enhancing practices such as improved post-harvest handling and processing (OECD, 2020). As a result, food quality increasingly reflects not only product characteristics but also the social conditions under which food is produced.

In addition, sustainable agriculture improves traceability and transparency within food systems, which are essential for meeting consumer demand for quality foods. Sustainable production systems are frequently associated with certification schemes, standards, and labeling mechanisms that communicate quality attributes related to environmental stewardship, safety, and ethical production. Such mechanisms help reduce information asymmetry between producers and consumers and build trust in food quality claims (Grunert et al., 2014). Enhanced traceability is particularly important in high-value markets where consumers demand verified information regarding food origin and production practices.

From an economic perspective, sustainable agriculture supports the consistent supply of quality foods by reducing production risks and increasing resilience to climate variability and market shocks. Diversified farming systems and improved soil health reduce vulnerability to pests, diseases, and extreme weather events, stabilizing both yields and product quality. This stability is critical for ensuring reliable food supply chains capable of meeting sustained demand for quality foods at local, national, and global levels (FAO, 2018).

To sum up, practicing sustainable agriculture enables food systems to meet the demand for quality foods in a holistic and enduring manner. By improving nutritional value, enhancing food safety, protecting environmental resources, supporting ethical production, and strengthening resilience, sustainable agriculture transforms food quality from a short-term outcome into a sustained system-wide achievement. Consequently, sustainable agriculture represents a strategic approach for aligning food production with public health goals, environmental sustainability, and long-term food system resilience.

Contributions of the Study

This study contributes academically by integrating the concepts of sustainable agriculture and quality food demand, which are often treated separately in existing literature. By synthesizing evidence from diverse secondary sources, the study advances a conceptual

understanding of how sustainability-oriented farming practices can directly support quality attributes valued by consumers and markets.

Methodologically, the study contributes through a systematic synthesis of secondary data using qualitative descriptive analysis, demonstrating how existing research, policy documents, and sectoral reports can be integrated to identify coherent pathways linking sustainable practices to quality food outcomes. This approach offers a useful reference for similar studies in contexts where primary data collection is constrained.

At the policy and practical level, the study provides action-oriented insights for policymakers, extension services, and agri-food stakeholders by highlighting key intervention areas, such as sustainable input management, quality control, and market alignment, that can support the supply of quality foods while maintaining environmental sustainability. These contributions support evidence-based strategies for developing sustainable, quality-oriented food systems.

Limitation and Future Research

This study has several limitations that should be considered when interpreting the findings. First, the use of secondary data limits the generalizability of the results, as the analysis is constrained by the scope, quality, and contextual assumptions of existing sources rather than direct empirical observation. Second, reliance on secondary data restricts the ability to capture recent changes, informal practices, and micro-level variations in farming systems and food markets that may influence the relationship between sustainable agriculture and food quality. Finally, the study lacks detailed regional specificity, as it synthesizes evidence from diverse contexts without focusing on a single geographic area, which may limit the applicability of the findings to particular regions or local policy settings. Consequently, the results should be interpreted as conceptual and indicative rather than universally prescriptive, underscoring the need for region-specific and primary-data-based follow-up studies.

Future studies should build on this research by incorporating primary data collection to empirically test the linkages between sustainable agricultural practices and measurable food quality outcomes at the farm and market levels. Region-specific case studies are needed to capture local agroecological conditions, institutional settings, and consumer preferences that shape the effectiveness of sustainability-based quality strategies. In addition, quantitative and mixed-method approaches could be employed to evaluate the economic, environmental, and social impacts of sustainable practices on farmer income, market access, and consumer willingness to pay for quality foods. Such studies would strengthen the evidence base for designing context-sensitive policies and extension programs that align sustainable agriculture with quality-oriented food systems.

CONCLUSIONS

This paper concludes that practicing sustainable agriculture is a strategic and effective approach for meeting Indonesia's growing demand for quality foods amid challenges of population growth, environmental degradation, and climate change. Sustainable agricultural practices, such as soil health management, diversified cropping systems, reduced chemical inputs, and improved post-harvest handling, contribute directly to improved food quality in terms of nutrition, safety, and consistency of supply. In the Indonesian context, where food production is dominated by smallholder farmers and characterized by diverse agroecological conditions, sustainable agriculture enhances resilience while maintaining productivity. Improved soil fertility and biodiversity support stable yields and better nutritional outcomes, while reduced reliance on synthetic inputs lowers risks of chemical residues in food products. Furthermore, sustainable agriculture strengthens socio-economic dimensions of food quality by improving farmer livelihoods, supporting inclusive value chains, and enhancing traceability within food systems. As Indonesian consumers increasingly demand safe, nutritious, and ethically produced foods, sustainable agriculture provides a viable pathway to align agricultural production with public health objectives, environmental sustainability, and long-term food system resilience. This study contributes by integrating sustainable agriculture practices with quality food demand through a systematic synthesis of

secondary evidence, providing conceptual and policy-relevant insights to support the development of sustainable, quality-oriented food systems.

RECOMMENDATIONS

According to the results of this study, two actions are recommended to support the role of sustainable agriculture in meeting demand for quality foods in Indonesia. First, national and local governments should strengthen policy support for sustainable agriculture by integrating it into food security, nutrition, and agricultural development strategies. Incentives for soil conservation, organic and low-input farming, and climate-smart agriculture should be expanded, particularly for smallholder farmers. Second, agricultural extension and capacity-building programs should be intensified to accelerate adoption of sustainable practices. Extension services should emphasize integrated pest management, sustainable nutrient management, and improved post-harvest handling to enhance food quality and safety. Strengthening farmer organizations and cooperatives will further facilitate knowledge sharing and access to quality-oriented markets.

ACKNOWLEDGEMENT

We say thank so much to any institution or person who have helped this study in one way or another.

REFERENCES

Badan Litbang Pertanian RI. (2005). *Revitalisasi Pertanian, Perikanan, dan Kehutanan 2005 - 2025*. Jakarta: Badan Litbang Pertanian RI.

Blacka, A., Couture, P., Coale, C., Dooley, J., Hankins, A., Lastovica, A., Uysal, M. (2009). *Agri-tourism*. Petersbug: Virginia Cooperative Extension.

BPS. (2024). *Statistik Indonesia 2024 (Statistical Year Book of Indonesia)*. Jakarta: Badan Pusat Statistik.

BPS. (2025). *Statistik Indonesia 2025 (Statistical Year Book of Indonesia)*. Jakarta: Badan Pusat Statistik.

Brady, N. C., & Weil, R. R. (2016). *The nature and properties of soils*. Upper Saddle River: Pearson Education.

Brooks, J. (2010). *Agricultural Policy Choices in Developing Countries: A Synthesis*. Paris: OECD Secretariat.

Bryman, A. (2016). *Social research methods*. Oxford: Oxford University Press.

Corselius, K. L., Simmons, S. R., & Flora, C. B. (2003). Farmer perspectives on cropping systems diversification in northwestern Minnesota. *Agriculture and Human Values*, 20(4), 371-383. Retrieved from <Go to ISI>://000188197400002

Darwanto, D. H. (2008). Pembangunan Pertanian Integratif Berwawasan Lingkungan dan Berorientasi Pasar. In R. Wibowo, H. Siregar, & A. Daryanto (Eds.), *Mungkinkah Petani Sejahtera? (Can Farmers Prosper?)* (pp. 89-96). Bogor: Brighten Press.

Department of Tourism. (2016). *Administrative Guidelines for Licensing of Agro-tourism Operations*. Botswana: Department of Tourism.

DESA-DSD. (2015). *17 Sustainable Development Goals 17 Partnerships*. New York: Division for Sustainable Development of the Department of Economic and Social Affairs, United Nations.

Dunne, T. (1999). *Marketing agricultural products: An Australian perspective*. South Melbourne: Oxford University Press.

FAO. (2002). *The Role of Agriculture in the Development of Least-Developed Countries and their Integration into the World Economy*. Rome: Food and Agriculture Organization of the United Nations.

FAO. (2017). *Food safety and quality: Linking food systems for improved nutrition*. Rome: Food and Agriculture Organization of the United Nations.

FAO. (2018). *Sustainable food systems: Concept and framework*. Rome: Food and Agriculture Organization of the United Nations.

FAO, & WHO. (2019). *Codex Alimentarius: International food standards*. Rome: Food and Agriculture Organization of the United Nations.

Goel, A. (2018). Linking Agro-ecology, Biodiversity conservation and Agro-tourism: Building Organic Bridges between Strategies. from Scientist turned Organic farmer

Grunert, K. G., Hieke, S., & Wills, J. (2014). Sustainability labels on food products: Consumer motivation, understanding and use. *Food Policy*, 44, 177–189. doi:<https://doi.org/10.1016/j.foodpol.2013.12.001>

Hardaker, J. B., Huirne, R. B. M., & Anderson, J. R. (1997). *Coping with risk in agriculture*. Wallingford, UK: CAB International.

Jackson, W. (1988). *Research methods*. Ontario: Prentice Hall.

Krisnamurthi, B. (2008). Arah Perkembangan Masa Depan Ekonomi Pertanian Indonesia. In R. Wibowo, H. Siregar, & A. Daryanto (Eds.), *Mungkinkah Petani Sejahtera? (Can Farmers Prosper?)* (pp. 31-38). Bogor: Brighten Press.

Liebman, M., & Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. *Ecological Applications*, 3(1), 92-122. doi:<https://doi.org/10.2307/1941795>

Masyhuri. (2008). Revitalisasi Pertanian untuk Mensejahterakan Petani (Revitalization of Agriculture for Farmer Prosperity). In R. Wibowo, H. Siregar, & A. Daryanto (Eds.), *Mungkinkah Petani Sejahtera? (Can Farmers Prosper?)* (pp. 151-163). Bogor: Brighten Press.

Minister of Agriculture. (2014). *Kebijakan Pembangunan Pertanian 2015-2019 (Agricultural Development Policy 2015-2019)*. Jakarta: Ministry of Agriculture.

Minister of Agriculture. (2015). *Rencana Strategis Kementerian Pertanian Tahun 2015-2019 (Strategic Plan of the Ministry of Agriculture, 2015-2019)*. Jakarta: Ministry of Agriculture.

Minister of Agriculture. (2017). *Kedaulatan Pangan Nasional (National Food Security)*. Jakarta: Ministry of Agriculture.

OECD. (2020). *Food systems and sustainability: Policies, perspectives and challenges*. Paris: OECD Publishing.

Poulton, C., & Wiggins, S. (2005). *The Future of Small Farms Achieving Pro-Poor Growth through Agriculture: the Challenges*. Paper presented at the Overseas Development Institute.

President of RI. (2011). *Peraturan Presiden Republik Indonesia Nomor 32 Tahun 2011 Tentang Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia 2011-2025 (Master Plan for Acceleration and Expansion of Indonesia Economic Development 2011-2025)*. Jakarta: Sekretariat Kabinet RI.

Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. *Philosophical Transactions of Royal Society B*, 363, 447–465. doi:0.1098/rstb.2007.2163

Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., . . . Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. *Nature Sustainability*, 1(8), 441–446. doi:<https://doi.org/10.1038/s41893-018-0114-0>

Pujawan, I. N., & Mahendrawathi, E. R. (2010). *Supply Chain Management* (2 ed.). Surabaya: Guna Widya.

Schreier, M. (2012). *Qualitative content analysis in practice*. Thousand Oaks: Sage Publications.

Sjah, T. (2011). *Metodologi Penelitian Sosial Ekonomi*. Mataram: Mataram University Press.

Sjah, T., Cameron, D., & Woodford, K. (2006). Extension service and farmer decision making on new cropping lands in East Lombok Indonesia. *Journal of International Agricultural and Extension Education*, 13(2), 39-55.

Soekartawi. (1995). *Pembangunan Pertanian (Agricultural Development)*. Jakarta: Raja Grafindo Persada.

Sullivan, P. (2003). *Applying the Principles of Sustainable Farming*. Fayetteville: National Center for Appropriate Technology (NCAT).

UNDP. (2015). *Sustainable Development Goals*. New York: United Nations Development Programme.

Walker, M. A. (2009). *Agritourism: Ideas and Resources*. Petersbug: Virginia Cooperative Extension.