Analisis Uji Impak pada Elektroplating Krom Dekoratif Menggunakan Logam Basis Tembaga dengan Variasi Suhu

Authors

  • Zulfikar Maulana Putra Universitas Pendidikan Mandalika
  • Sukainil Ahzan Universitas Pendidikan Mandalika
  • Dwi Pangga Universitas Pendidikan Mandalika

DOI:

https://doi.org/10.36312/jar.v2i2.2141

Keywords:

Uji impak, elektroplating krom dekoratif, suhu, Logam Basis Tembaga, Sifat Mekanik

Abstract

Penelitian ini mengkaji pengaruh variasi suhu selama proses elektroplating krom dekoratif terhadap kekuatan impak dan kecerahan logam dasar tembaga. Elektroplating dilakukan pada tiga suhu berbeda: 50°C, 60°C, dan 70°C. Hasil penelitian menunjukkan bahwa suhu elektroplating yang lebih tinggi menghasilkan peningkatan kecerahan dan kekuatan impak sampel tembaga yang dilapisi. Secara khusus, kekuatan impak meningkat dari 1,8371 joule/mm² pada suhu 50°C menjadi 1,9259 joule/mm² pada suhu 70°C. Hal ini menunjukkan bahwa pengendalian suhu pelapisan sangat penting untuk mengoptimalkan sifat estetika dan mekanik dari logam yang dilapisi. Temuan ini sangat relevan bagi industri seperti otomotif dan dirgantara, di mana peningkatan performa mekanik dan kualitas permukaan sangat penting. Penelitian ini berkontribusi pada pemahaman yang lebih baik tentang peran suhu dalam proses elektroplating dan memberikan wawasan praktis untuk meningkatkan kualitas produk melalui optimasi suhu.

Analysis of Impact Test on Decorative Chrome Electroplating Using Copper Base Metal with Temperature Variations

Abstract

This study investigates the effect of temperature variations during the decorative chrome electroplating process on the impact strength and brightness of copper-based metal. Electroplating was conducted at three different temperatures: 50°C, 60°C, and 70°C. The results indicated that higher electroplating temperatures lead to increased brightness and impact strength of the coated copper samples. Specifically, the impact strength increased progressively from 1.8371 joules/mm² at 50°C to 1.9259 joules/mm² at 70°C. This suggests that controlling the plating temperature is crucial for optimizing both the aesthetic and mechanical properties of electroplated metals. These findings are particularly relevant for industries such as automotive and aerospace, where enhanced mechanical performance and surface quality are critical. The study contributes to a better understanding of the role of temperature in the electroplating process and provides practical insights for improving product quality through temperature optimization.

References

Belevskii, S. S., Gotelyak, A. V., Silkin, S. A., & Dikusar, A. I. (2019). Macroscopic Size Effect on the Microhardness of Electroplated Iron Group Metal—Tungsten Alloy Coatings: Impact of Electrode Potential and Oxygen-Containing Impurities. Surface Engineering and Applied Electrochemistry, 55(1), 46–52. https://doi.org/10.3103/S1068375519010058

Budiana, B., Situmorang, C. B., Maulidiah, H. M., & Puspita, W. R. (2023). Effect of Current, Voltage, Temperature, and Time Variations on Thickness of Steel using Electroplating Process. JURNAL INTEGRASI, 15(2), Article 2. https://doi.org/10.30871/ji.v15i2.6519

Chiang, C.-H., Lin, C.-C., & Hu, C.-C. (2018). Electrodeposition and Microstructure Characterization of Bimetallic Copper-Silver Films from the Methanesulfonic Acid Baths. Journal of The Electrochemical Society, 165(11), D550. https://doi.org/10.1149/2.0971811jes

Lee, J.-H., & Kwak, J. B. (2022). Measurement of Shear Strengths of Cu Films Using Precise Chip Forming. Materials, 15(3), Article 3. https://doi.org/10.3390/ma15030948

Liao, C.-N., Lin, C.-Y., Huang, C.-L., & Lu, Y.-S. (2013). Morphology, Texture and Twinning Structure of Cu Films Prepared by Low-Temperature Electroplating. Journal of The Electrochemical Society, 160(12), D3070. https://doi.org/10.1149/2.014312jes

Moura, B., Papaioannou, E., Grigoropoulos, A., Zoikis-Karathanasis, A., & Monteiro, H. (2023). Sustainability of Spent Nickel-Based Electroplating Baths: An Innovative Valorisation Process. Sustainability, 15(21), Article 21. https://doi.org/10.3390/su152115366

Putri, A., & Handani, S. (2015). Karakterisasi Sifat Mekanik Hasil Elektroplating Nikel Karbonat (NiCO3) pada Tembaga (Cu). Jurnal Fisika Unad, 4(1). https://www.semanticscholar.org/paper/KARAKTERISASI-SIFAT-MEKANIK-HASIL-ELEKTROPLATING-Putri-Handani/754d8ced29abb29104fa4c2871e0656f825d31bc

Reimschüssel, S., Fuchs, U., & Sand, G. (2023). Electroplating scheduling: Closing a research gap from an automation vendor’s perspective. In A. C. Kokossis, M. C. Georgiadis, & E. Pistikopoulos (Eds.), Computer Aided Chemical Engineering (Vol. 52, pp. 125–130). Elsevier. https://doi.org/10.1016/B978-0-443-15274-0.50021-4

Suarsana, I. (2008). Pengaruh waktu pelapisan nikel pada tembaga dalam pelapisan khrom dekoratif terhadap tingkat kecerahan dan ketebalan lapisan. Jurnal Ilmiah Teknik Mesin CAKRAM, 2(1), 48–60.

Tiwari, C. S. (2012). Conformal EL Ni Fill in Through-Silicon-Via for 3D Interconnects. ECS Transactions, 41(43), 73. https://doi.org/10.1149/1.4717505

Vidal, R., Alberola-Borràs, J.-A., Gómez-Cordón, J., Moliner, E., Ortega, A., & Verdejo, E. (2017). LCA to Evaluate the Environmental Impact for Chemical Pre-treatment in Plastics Metallization. Journal of Polymers and the Environment, 25(4), 961–972. https://doi.org/10.1007/s10924-016-0872-6

Wahab, H. A., Noordin, M. Y., Izman, S., & Kurniawan, D. (2013). Quantitative Analysis of Electroplated Nickel Coating on Hard Metal. The Scientific World Journal, 2013(1), 631936. https://doi.org/10.1155/2013/631936

Yang, S., Kang, Z., & Guo, T. (2020). Preparation and conductive property of Cu coatings and Cu-graphene composite coatings on ABS substrate. Nanotechnology, 31(19), 195710. https://doi.org/10.1088/1361-6528/ab703e

Downloads

Published

2023-07-31

Issue

Section

Articles

How to Cite

Putra, Z. M., Ahzan, S., & Pangga, D. (2023). Analisis Uji Impak pada Elektroplating Krom Dekoratif Menggunakan Logam Basis Tembaga dengan Variasi Suhu. Journal of Authentic Research, 2(2), 115-125. https://doi.org/10.36312/jar.v2i2.2141