Analisis Pengujian Tarik dan Impak Material komposit buah Gambas, Resin dan Fiber Glass

Authors

  • Amalia Ma’rifatul Maghfiroh Universitas Bojonegoro

DOI:

https://doi.org/10.36312/jar.v4i1.3137

Keywords:

gambas, komposit, uji tarik, uji impak

Abstract

Bidang industri penerbangan, material komposit yang ringan dan kuat menjadi komponen penting dalam desain pesawat, terutama pada bagian wingspan (rentang sayap) yang berfungsi untuk menghasilkan gaya angkat. Saat ini, berbagai bahan digunakan untuk pembuatan wingspan seperti aluminium, serat karbon, dan bahan komposit lainnya. Namun, material tersebut mempunyai kekurangan terkait bahan material dan biaya produksi terlalu mahal. Oleh karena itu, diperlukan inovasi dalam pemanfaatan bahan yang lebih murah, mudah diperoleh, dan ramah lingkungan. Buah gambas (Luffa cylindrica), yang dikenal di Indonesia sebagai sayuran, memiliki potensi sebagai bahan alternatif dalam pembuatan wingspan pesawat. Struktur dalam buah gambas yang berbentuk serat alami dengan densitas rendah, namun cukup kuat, menjadikannya menarik untuk diteliti lebih lanjut. Tujuan dari penelitian ini adalah untuk mengetahui kekuatan tarik dan kekuatan impak material komposit gambas, resin dan fiber glass pada komposisi tertentu. Metode pembuatan spesimen komposit dengan variasi fraksi volume gambas, resin dan fiberglass, kemudian dilakukan pengujian kekuatan tarik dan impak. Hasil penelitian ini, didapatkan karakteristik mekanik dari uji tarik dan uji impak. Uji tarik yang paling tinggi adalah dengan fraksi volume 94% resin, 3% fiberglass dan 3% serat gambas yaitu sebesar 11,31 MPa begitu juga dengan uji impak yang paling tinggi sama yaitu fraksi volume 94% resin, 3% fiberglass dan 3% serat gambas sebesar 0,43 J/mm2. Proses pembuatan dan pengujian buah gambas kering menunjukkan bahwa material ini dapat diintegrasikan ke dalam desain wingspan pesawat. Pengujian mekanik yang dilakukan membuktikan bahwa material ini memiliki potensi alternatif penguat dalam komposit.

In the aviation industry, lightweight and strong composite materials are an important component in aircraft design, especially in the wingspan section (wing span) which functions to generate lift. Currently, various materials are used for wingspan manufacturing such as aluminum, carbon fiber, and other composite materials. However, these materials have shortcomings related to material and production costs are too expensive. Therefore, innovation is needed in the use of cheaper, easily obtained, and environmentally friendly materials. Luffa cylindrica fruit, known in Indonesia as a vegetable, has the potential as an alternative material in making aircraft wingspans. The structure of the luffa fruit in the form of natural fibers with low density, but quite strong, makes it interesting for further research. The purpose of this study is to determine the tensile strength and impact strength of luffa, resin and fiberglass composite materials at certain compositions. The method of making composite specimens with varying volume fractions of luffa, resin and fiberglass, then subjected to tensile strength and impact tests. The results of this study, obtained mechanical characteristics from tensile tests and impact tests. The highest tensile test was with a volume fraction of 94% resin, 3% fiberglass and 3% luffa fiber, which was 11.31 MPa, as well as the highest impact test, namely a volume fraction of 94% resin, 3% fiberglass and 3% luffa fiber, which was 0.43 J/mm2. The process of making and testing dried luffa fruit showed that this material can be integrated into the aircraft wingspan design. The mechanical tests carried out proved that this material has the potential to be an alternative reinforcement in composites.

References

Anderson, J. D. (2011). Introduction to Flight. McGraw-Hill.

Arun, S., Midhun, D., & Jomon, P. (2017). "Mechanical properties of Luffa cylindrica fiber reinforced composite." Materials Today: Proceedings, 453-459.

ASM International. (1990). Tensile Testing. ASM International.

ASTM E8/E8M-16a. (2016). Standard Test Methods for Tension Testing of Metallic Materials.

ASTM E23-18. (2018). Standard Test Methods for Notched Bar Impact Testing of Metallic Materials.

Budinski, K.G., & Budinski, M.K. (2008). Engineering Materials: Properties and Selection (9th ed.). Pearson Education.

Callister, W.D. (2007). Materials Science and Engineering: An Introduction (7th ed.). John Wiley & Sons.

Davis, J.R. (Ed.). (1997). Tensile Testing. ASM International.

Dieter, G.E. (1986). Mechanical Metallurgy (3rd ed.). McGraw-Hill.

ISO 6892-1:2009. Metallic materials — Tensile testing — Part 1: Method of test at room temperature.

Meyers, M.A., & Chawla, K.K. (2008). Mechanical Behavior of Materials. Cambridge University Press.

Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural Fibers, Biopolymers, and Biocomposites. CRC Press.

Ramesh, M., Palanikumar, K., & Hemachandra Reddy, K. (2014). "Plant fibre-based bio-composites: Sustainable and renewable green materials." Renewable and Sustainable Energy Reviews, 79-93.

Romli, A. Z., Sapuan, S. M., Ahmad, M. M. H. M., Khalina, A., & Leman, Z. (2016). "Physical properties of woven hybrid yarn kenaf/PET fibre composites." Journal of Materials Research and Technology, 123-128.

Wambua, P., Ivens, J., & Verpoest, I. (2003). "Natural fibres: can they replace glass in fibre reinforced plastics?" Composites Science and Technology, 63(9), 1259-1264.

Downloads

Published

2025-07-28

Issue

Section

Articles

How to Cite

Maghfiroh, A. M. (2025). Analisis Pengujian Tarik dan Impak Material komposit buah Gambas, Resin dan Fiber Glass. Journal of Authentic Research, 4(1), 506-515. https://doi.org/10.36312/jar.v4i1.3137