Rancang Bangun Carbon Capture Storage (CCS) Fotobioreaktor Mikroalga untuk Mereduksi Emisi Karbon CO2

Authors

  • Muhammad Zulham Kentji Institut Teknologi PLN
  • Septianissa Azzahra Institut Teknologi PLN
  • Kuswowo Kuswowo Institut Teknologi PLN

DOI:

https://doi.org/10.36312/jar.v4iSpecial%20Issue.3475

Keywords:

Mikroalga, Fotobioreaktor, CO2

Abstract

Berdasarkan data dari World Health Organization (WHO) mengatakan bahwa polusi udara merupakan masalah utama pencemaran lingkungan yang menyebabkan 7 juta kematian setiap tahunnya. Gas buang pada kendaraan bermotor berupa pollutan CO, CO2, NO, SO, dan Pb yang menjadi penyebab pencemaran udara. Mikroalga adalah tumbuha mikroskopis sel tunggal yang dapat menyerap CO2 sehingga dapat menurunkan kadar CO2 yang ada di udara. Untuk mendukung kultur dan pertumbuhan mikroalga, fotobioreaktor menjadi komponen krusial dalam penelitian ini. Fotobioreaktor adalah reaktor tembus pandang yang untuk digunakan mendukung kultivasi mikroalga dan menyerap CO2. Penelitian ini bertujuan untuk mengetahui rancang bangun fotobireaktor mikroalga dan cara kerjanya, serta mengamati proses perbanyakan mikroalga dan metode tahap pemanenannya. Metode pengumpulan data pada penelitian ini adalah dengan melakukan eksperimen dan observasi secara langsung sehingga diperoleh data asli sesuai dengan hasil pengujian prototype  fotobioreactor mikroalga dalam menyerap CO2, O2 yang dihasilkan dan proses pemanenan mikroalga. Hasil yang diperoleh pada penelitian ini adalah terciptanya rancang bangun fotobioreaktor yang menggabungkan sistem terbuka dan tertutup sehingga dapat memaksimalkan proses kultivasi mikroalga. Teknologi fotobioreaktor memungkinkan mikroalga menangkap karbon melalui proses fotosintesis, meningkatkan produktivitas mikroalga hingga dua hingga lima kali lipat dari kondisi normal.

Based on data from the World Health Organization (WHO), air pollution is a major environmental pollution issue that causes 7 million deaths each year. Emissions from motor vehicles, including pollutants such as CO, CO2, NO, SO, and Pb, contribute significantly to air pollution. Microalgae are microscopic single-celled plants capable of absorbing CO2 to help reduce CO2 levels in the air. To support the culture and growth of microalgae, a photobioreactor becomes a crucial component in this research. A photobioreactor is a transparent reactor equipped with media supply installations and gas emissions for culturing microalgae and absorbing CO2. This study aims to understand the design and mechanism of a microalgae photobioreactor, as well as to observe the process of microalgae propagation and the harvesting method. Data collection in this study was conducted through experiments and direct observation to obtain original data based on the results of testing a microalgae photobioreactor prototype in absorbing CO2, the O2 produced, and the microalgae harvesting process. The result obtained in this research is the construction of a photobioreactor design that combines open and closed systems to maximize the microalgae cultivation process. Photobioreactor technology allows microalgae to capture carbon through the process of photosynthesis, increasing microalgae productivity by two to five times over normal conditions.

 

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Abbass, H., et al. (2022). The role of transportation emissions in the global CO? emission profile. Environmental Science & Technology, 56(7), 4125-4132.

Afriani, S., Setyaningsih, I., Teknologi Hasil Perairan, D., Perikanan dan Ilmu Kelautan, F., & Pertanian Bogor, I. (n.d.). KOMPOSISI KIMIA Spirulina platensis YANG DIKULTIVASI DALAM FOTOBIOREAKTOR DENGAN FOTOPERIODE BERBEDA. In JPHPI 2018 (Vol. 21, Issue 3).

Alalayah, W. (2014). Experimental investigation parameters of hydrogen production by algae Chlorella vulgaris.

Budi, F, S., & Budi, A. (2019). Perbandingan Penggunaan Fotobioreaktor dengan Kolam Terbuka dalam Produksi Mikroalga untuk Bioremediasi. Jurnal Teknik Lingkungan, 8(1), 70–80.

Daneshvar, E., Wicker, R. J., Show, P. L., & Bhatnagar, A. (2022). Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 427. https://doi.org/10.1016/j.cej.2021.130884

Halomoan, P. L., & Nugroho, H. (2017). Potential of microalgae for CO? fixation and biofuel production. Journal of Applied Phycology, 29(2), 155-164.

Haris, A., & Muhammad, F. (n.d.). PERTUMBUHAN MIKROALGA SPIRULINA (Arthrospira platensis) DALAM TEKANAN STIROFOAM PADA LINGKUNGAN AIR TAWAR.

Indriyani, B, P, I., & A, S. (2020). Kultivasi Mikroalga dengan Fotobioreaktor untuk Produksi Biodiesel di Indonesia. Jurnal Teknologi Bioproses, 10(1), 40–50.

Kotasthane, T. (2017). Potential of Microalgae for Sustainable Biofuel Production. Journal of Marine Science Research & Development, 07. https://doi.org/10.4172/2155-9910.1000223

Kotasthane, S. (2017). Urban air pollution and its mitigation strategies. Environmental Pollution and Control, 62(4), 55-64.

Muhali, M., Hulyadi, H., Khaeruman, K., Gargazi, G., & Azmi, I. (2025). Identifying Analytical Thinking Skills in Forestry Students: Understanding Climate Change Awareness in the 21st Century Context. Prisma Sains?: Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 13, 283. https://doi.org/10.33394/j-ps.v13i2.13644

Muhali, N., et al. (2025). Microalgae as a sustainable solution for carbon capture in urban areas. Environmental Engineering Research, 50(1), 22-34.

Muyassaroh, Dewi, Rini, K., & Anggorowati, D. (2018). Kultivasi mikroalga Spirulina platensis dengan variasi pencahayaan menggunakan lampu TL dan matahari. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST).

Prasetyo, L. D., Supriyantini, E., & Sedjati, S. (2022). Pertumbuhan Mikroalga Chaetoceros calcitrans Pada Kultivasi Dengan Intensitas Cahaya Berbeda. Buletin Oseanografi Marina, 11(1), 59–70. https://doi.org/10.14710/buloma.v11i1.31698

Rizaldi, M. A., Azizah, R., Latif, M. T., Sulistyorini, L., & Salindra, B. P. (2022). Literature Review: Dampak Paparan Gas Karbon Monoksida Terhadap Kesehatan Masyarakat yang Rentan dan Berisiko Tinggi. Jurnal Kesehatan Lingkungan Indonesia, 21(3), 253–265. https://doi.org/10.14710/jkli.21.3.253-265

Rizaldi, A., et al. (2022). The impact of vehicle emissions on urban air pollution. Environmental Pollution, 283, 117373.

Rusdiani, R. R. (2016). Optimalisasi Teknologi Fotobioreaktor Mikroalga sebagai Dasar Perencanaan Strategi Mitigasi Gas CO2. ,” Jurnal Teknik ITS, 5.

Rusdiani, R. R., Boedisantoso, R., & Hanif, M. (2016). Optimalisasi Teknologi Fotobioreaktor Mikroalga sebagai Dasar Perencanaan Strategi Mitigasi Gas CO2. JURNAL TEKNIK ITS , 25(2), 188–192.

Rusdiani, D., et al. (2016). Efficiency of microalgae in CO? fixation: A comparison with terrestrial plants. Journal of Environmental Management, 179, 122-132.

Sari, s, W., & Sari, D. (2018). Perbandingan Penggunaan Fotobioreaktor dan Kolam Terbuka dalam Kultivasi Mikroalga untuk Produksi Bioenergi. Jurnal Teknologi Energi Terbarukan, 12(2), 110–120.

Sesana, M., et al. (2021). CO? emissions and their contribution to global warming: An assessment of mitigation strategies. Climate Change and Environmental Sustainability, 34(3), 234-242.

Widawati, D., Santosa, G. W., & Yudiati, E. (2022). Pengaruh Pertumbuhan Spirulina platensis terhadap Kandungan Pigmen beda Salinitias. Journal of Marine Research, 11(1), 61–70. https://doi.org/10.14710/jmr.v11i1.30096

Downloads

Published

2025-10-02

How to Cite

Kentji, M. Z., Azzahra, S., & Kuswowo, K. (2025). Rancang Bangun Carbon Capture Storage (CCS) Fotobioreaktor Mikroalga untuk Mereduksi Emisi Karbon CO2. Journal of Authentic Research, 4(Special Issue), 1055-1066. https://doi.org/10.36312/jar.v4iSpecial Issue.3475