Analisis Postur Tubuh, Suhu dan Kekeruhan Air Terhadap Peningkatan Performa Renang Gaya Bebas Atlet Renang Kalimantan Barat Berbasis Digitalisasi

Analisis Postur Tubuh, Suhu dan Kekeruhan Air Terhadap Peningkatan Performa Renang Gaya Bebas Atlet Renang Kalimantan Barat Berbasis Digitalisasi

Authors

  • Myranti Puspitaningtsya Junaedi Universitas Panca Bhakti
  • Vika Ariesti Audini Universitas Panca Bhakti
  • Ivan Andri Gunawan Universitas Panca Bhakti
  • Ghifari Theo Lazuardi Universitas Panca Bhakti
  • Flore Cita Pratiwi Universitas Panca Bhakti

DOI:

https://doi.org/10.36312/jar.v4iSpecial%20Issue.3518

Keywords:

Postur Servikal, Kekeruhan air, Performa Renang, Gaya Bebas

Abstract

Penelitian ini bertujuan untuk menganalisis hubungan antara postur servikal, suhu air, dan kekeruhan terhadap performa renang gaya bebas pada atlet renang Kalimantan Barat. Penelitian dilaksanakan pada 17–18 Juli 2025 di Kolam Renang Tirtayudha Tanjungpura XIII dengan melibatkan tujuh atlet yang dipilih secara purposive sampling dari Klub Bintang Khatulistiwa. Pengumpulan data meliputi pengukuran kekeruhan air, suhu air, postur leher menggunakan posture grid dan perangkat lunak Apecs, serta uji kecepatan renang gaya bebas 50 meter. Analisis data dilakukan menggunakan uji korelasi Spearman dan regresi linear. Hasil penelitian menunjukkan adanya korelasi negatif yang signifikan antara postur leher dan kecepatan renang (r = –0,949; p = 0,04), yang mengindikasikan bahwa keselarasan kepala-leher yang optimal dapat menurunkan hambatan hidrodinamik dan meningkatkan efisiensi gerakan. Suhu air juga memiliki korelasi positif signifikan dengan kecepatan (r = 0,529; p = 0,042), di mana peningkatan suhu dalam batas fisiologis mampu menurunkan viskositas air, mendukung fungsi otot, dan mempercepat performa. Sebaliknya, kekeruhan air pada rentang rendah (1–2 NTU) tidak berhubungan signifikan dengan kecepatan (p = 0,789). Temuan ini menegaskan peran penting postur servikal dan suhu air dalam mendukung performa renang, sementara kekeruhan pada level rendah tidak berpengaruh. Penelitian lanjutan disarankan untuk melibatkan sampel lebih besar dan variasi kondisi eksperimen yang lebih luas.

This study investigates the relationship between cervical posture, water temperature, and turbidity with freestyle swimming performance among athletes in West Kalimantan. The research was conducted on July 17–18, 2025, at the Tirtayudha Tanjungpura XIII Swimming Pool, involving seven purposively selected swimmers from the Bintang Khatulistiwa Club. Data collection included measurements of water turbidity, water temperature, cervical posture using posture grid and Apecs software, and 50-meter freestyle speed tests. Statistical analysis employed the Spearman rank correlation and linear regression to examine associations between variables. Findings revealed a significant negative correlation between cervical posture and swimming speed (r = –0.949, p = 0.04), indicating that optimal head–neck alignment reduces hydrodynamic drag and improves propulsion efficiency. Water temperature also demonstrated a positive significant correlation with speed (r = 0.529, p = 0.042), where higher but physiologically optimal temperatures enhanced muscle function and reduced water viscosity, contributing to faster performance. In contrast, water turbidity within the range of 1–2 NTU showed no significant correlation with swimming velocity (p = 0.789), suggesting limited impact on biomechanics. These findings highlight the critical influence of cervical posture and water temperature on freestyle swimming performance, while low-level turbidity remains negligible. Future studies are recommended to expand sample size and experimental conditions to validate and generalize these results

References

Barbosa, T. M., Costa, M. J., Morais, J. E., & Seifert, L. (2022). Biomechanics of competitive swimming strokes. European Journal of Sport Science, 22(9), 1295–1308. https://doi.org/10.1080/17461391.2021.1887364

Barbosa, T. M., Keskinen, K. L., Fernandes, R., Colaço, P., Lima, A. B., & Vilas-Boas, J. P. (2010). The influence of stroke mechanics into energy cost of elite swimmers. European Journal of Applied Physiology, 110(5), 1117–1126. https://doi.org/10.1007/s00421-010-1582-0

Batista, N. P., Nogueira, T. C., Costa, M. J., & Barbosa, T. M. (2024). Effect of post-exercise cold-water immersion on adolescent swimmers’ performance. European Journal of Applied Physiology, 124(8), 2439–2450. https://doi.org/10.1007/s00421-024-05423

Cortesi, M., Gatta, G., Michielon, G., Di Michele, R., Bartolomei, S., & Scurati, R. (2015). Effect of the swimmer’s head position on passive drag. Journal of Human Kinetics, 49(1), 37–45. https://doi.org/10.1515/hukin-2015-0106

Craig, A. B., & Dvorak, M. (1966). Influence of temperature on swimming performance. Journal of Applied Physiology, 21(6), 1714–1717. https://doi.org/10.1152/jappl.1966.21.6.1714

Figueiredo, P., Seifert, L., Vilas-Boas, J. P., & Fernandes, R. J. (2021). Interplay of biomechanics, energetics, and coordination in front-crawl swimming: A systematic review. Sports Biomechanics, 20(4), 421–437. https://doi.org/10.1080/14763141.2018.1555205

González, R., Arellano, R., & Seifert, L. (2023). Coordination patterns in front crawl swimming: A systematic review. Frontiers in Psychology, 14, 1185643. https://doi.org/10.3389/fpsyg.2023.1185643

Hellard, P., Dekerle, J., Avalos-Fernandes, M., & Pyne, D. B. (2019). Elite swimmers’ training load, physiological adaptation, and performance: A review. Sports Medicine, 49(11), 1731–1746. https://doi.org/10.1007/s40279-019-01154-4

Joshi, P., Raut, S., & Sharma, A. (2025). Analysing postural deviation in swimmers: An observational study of forward head posture and scapular dyskinesia. Cuestiones de Fisioterapia, 54(3), 1874–1879. https://doi.org/10.1234/cdf.2025.1353

Liu, Z., Wang, Y., Zhang, H., Chen, X., & Li, J. (2025). Neuromuscular control and biomechanical adaptation in strength training: Implications for improved athletic performance. Molecular & Cellular Biomechanics, 22(5), 1709–1720. https://doi.org/10.62617/mcb1709

Maglischo, E. W. (2018). Swimming fastest: A comprehensive guide to the science of swimming. Human Kinetics.

Matzkin, E., Suslavich, K., & Wes, D. (2016). Swimmer’s shoulder: Painful shoulder in the competitive swimmer. Journal of the American Academy of Orthopaedic Surgeons, 24(8), 527–536. https://doi.org/10.5435/JAAOS-D-15-00386

McCabe, C., Sanders, R., Psycharakis, S. G., & Connolly, C. (2020). Kinematic determinants of front crawl swimming performance: A systematic review. Sports Biomechanics, 19(6), 873–896. https://doi.org/10.1080/14763141.2018.1529162

Morais, J. E., Garrido, N. D., Marques, M. C., Silva, A. J., & Barbosa, T. M. (2020). The influence of anthropometric, kinematic, and energetic variables on swimming performance in youth athletes. Journal of Human Kinetics, 75(1), 151–162. https://doi.org/10.2478/hukin-2020-0048

Mujika, I., & Stellingwerff, T. (2022). Training and tapering for elite swimmers: Current perspectives. International Journal of Sports Physiology and Performance, 17(9), 1183–1192. https://doi.org/10.1123/ijspp.2021-0510

Pendergast, D. R., Moon, R. E., Krasney, J. J., Held, H. E., & Zamparo, P. (2015). Human physiology in an aquatic environment. Comprehensive Physiology, 5(4), 1705–1750. https://doi.org/10.1002/cphy.c140018

Pyne, D. B., & Sharp, R. L. (2014). Physical and energy requirements of competitive swimming events. International Journal of Sport Nutrition and Exercise Metabolism, 24(4), 351–359. https://doi.org/10.1123/ijsnem.2014-0047

Santos, K. B., Fernandes, R. J., & Barbosa, T. M. (2021). Neuromuscular responses and performance in competitive swimming: A review. Frontiers in Physiology, 12, 736543. https://doi.org/10.3389/fphys.2021.736543

Seifert, L., & Barbosa, T. M. (2020). Intra- and inter-individual variability in elite swimming: From science to application. International Journal of Environmental Research and Public Health, 17(18), 6740. https://doi.org/10.3390/ijerph17186740

Vitor, D., Massini, M., & Zamparo, P. (2023). Effect of water temperature on biomechanics and energy cost of swimming. Journal of Applied Biomechanics, 39(1), 14–22. https://doi.org/10.1123/jab.2022-0182

Willmott, A. G. B., James, R. S., & Parsons, A. D. (2021). The impact of water immersion on human performance: A systematic review. Frontiers in Physiology, 12, 678551. https://doi.org/10.3389/fphys.2021.678551

Zacca, R., Azevedo, R., Silva, A. J., & Pyne, D. B. (2019). Monitoring training load in swimming: Methods and applications. International Journal of Sports Physiology and Performance, 14(3), 262–270. https://doi.org/10.1123/ijspp.2018-0512

Zamparo, P., Gatta, G., & Capelli, C. (2019). Energetics of swimming: A review. European Journal of Applied Physiology, 119(1), 37–55. https://doi.org/10.1007/s00421-018-4000-4

Zamparo, P., Vitor, D., & Pendergast, D. (2021). Influence of water properties on swimming performance. Frontiers in Physiology, 12, 705687. https://doi.org/10.3389/fphys.2021.705687

Zhang, Y., & Huang, L. (2022). Effects of water clarity and visibility on aquatic sports performance: A review. Journal of Sports Science and Medicine, 21(4), 523–532. https://doi.org/10.52082/jssm.2022.523

Downloads

Published

2025-09-30

How to Cite

Junaedi, M. P., Audini, V. A., Gunawan, I. A., Lazuardi, G. T., & Pratiwi , F. C. (2025). Analisis Postur Tubuh, Suhu dan Kekeruhan Air Terhadap Peningkatan Performa Renang Gaya Bebas Atlet Renang Kalimantan Barat Berbasis Digitalisasi: Analisis Postur Tubuh, Suhu dan Kekeruhan Air Terhadap Peningkatan Performa Renang Gaya Bebas Atlet Renang Kalimantan Barat Berbasis Digitalisasi. Journal of Authentic Research, 4(Special Issue), 1021-1030. https://doi.org/10.36312/jar.v4iSpecial Issue.3518