Implementasi K-Means Cluster untuk Menentukan Persebaran Tingkat Pengangguran

Authors

  • Siti Aprizkiyandari Universitas Tanjungpura
  • Neva Satyahadewi Universitas Tanjungpura
  • Aditya Nugraha Pratama Universitas Tanjungpura
  • Rendi Rivaldo Universitas Tanjungpura
  • Syarif Irwan Nurdiansyah Universitas Tanjungpura
  • Shifa Helena Universitas Tanjungpura

DOI:

https://doi.org/10.36312/ej.v4i2.1518

Keywords:

Tingkat Pengangguran, Analisis Klaster, K-Means Cluster.

Abstract

Tingkat pengangguran yang ada di Kalimantan Barat sangat bervariasi. Terdapat Kabupaten/ Kota dengan tingkat pengangguran tinggi dan ada yang rendah, namun belum terdapat pengelompokkannya. Pada penelitian ini, Kabupaten/ Kota di Kalimantan Barat dikelompokkan dengan analisis klaster menggunakan metode K-Means Cluster. Metode K-Means Cluster dapat digunakan dalam pengambilan keputusan dalam mengelompokkan tingkat pengangguran di Kalimantan Barat berdasarkan indikator yang digunakan. Indikator pada penelitian ini terdiri dari TPT, IPM, PDRB dan UMK, dimana data berasal dari BPS Provinsi Kalimantan Bartat. Diperoleh hasil yaitu terbentuknya 2 klaster. Klaster 1 mewakili  kabupaten/kota dengan tingkat pengangguran tinggi yang terdiri dari 4 anggota yaitu Kabupaten Kubu Raya, Kabupaten Ketapang, Kota Pontianak, dan Kota Singkawang dengan persentase TPT klaster 1 yaitu sebesar 8,87%. Sedangkan klaster 2 terdiri dari 10 Kabupaten, yaitu  Kayong Utara, Melawi, Sekadau, Kapuas Hulu, Sintang, Sanggau, Mempawah, Landak, Bengkayang dan Sambas dengan TPT klaster 2 yaitu sebesar 3,73%.

Implementation of K-Means Cluster to Determine the Distribution of Unemployment Rate

Abstract

Unemployment rates in West Kalimantan vary widely. There are regencies/municipalities with high unemployment rates and some with low unemployment rates, but there is no grouping yet. In this research, regencies/municipalities in West Kalimantan are grouped by cluster analysis using the K-Means Cluster method. K-Means Cluster method can be used in decision-making in grouping the unemployment rate in West Kalimantan based on the indicators used. The indicators in this study consist of TPT, HDI, GRDP, and MSE, where the data comes from BPS of West Kalimantan Province. The result obtained is the formation of 2 clusters. Cluster 1 represents districts/cities with a high unemployment rate consisting of 4 members, namely Kubu Raya Regency, Ketapang Regency, Pontianak City, and Singkawang City with a TPT percentage of cluster 1 of 8.87%. Meanwhile, cluster 2 consists of 10 regencies, namely North Kayong, Melawi, Sekadau, Kapuas Hulu, Sintang, Sanggau, Mempawah, Landak, Bengkayang, and Sambas with a TPT cluster 2 of 3.73%.

Downloads

Download data is not yet available.

References

Arunkumar, N., Mohammed, M. A., Ghani, M. K. abd, Ibrahim, D. A., Gonzalez, R. G., & Alvuquerque, V. H. C. de. (2019). K-Means Clustering and Neural Network for Object Detecting and Identifying abnormality of Brain Tumor. Soft Computing, 9083–9096.

Axelrad, H., Malul, M., & Luski, I. (2018). Unemployment among younger and older individuals: does conventional data about unemployment tell us the whole story?. Journal for Labour Market Reserarch, 52(3), 1–12.

Badan Pusat Stastitik Provinsi Kalimantan Barat. (2021). Produk Domestik Regional Bruto Kabupaten/ Kota Atas Dasar Harga Konstan di Kalimantan Barat.

Badan Pusat Statistik. (2021). Tingkat Pengangguran Terbuka (TPT) Indonesia.

Badan Pusat Statistik Kalimantan Barat. (2021). Tingkat Pengangguran Terbuka (TPT) Kalimantan Barat.

Hidayat, R., Wasono, R., & Darsyah, Moh. Y. (2017). Pengelompokan Kabupaten / Kota Di Jawa Tengah. Seminar Nasional Pendidikan, Sains dan Teknologi , 240–250.

Itang. (2015). PENYEBAB KEMISKINAN DAN CARA MENANGGULANGINYA. Tazkiya, 16(1), 1–30.

Prastiwi, D., & Handayani, H. R. (2019). Analisis Pengaruh Jumlah Penduduk, Pendidikan, Upah Minimum, Dan PDRB Terhadap Tingkat Pengangguran Terbuka Di Provinsi Sulawesi Selatan. Diponegoro Journal of Economic, 1(1), 159–169.

Singh, A., Yadav, A., & Rana, A. (2013). K-means with Three different Distance Metrics. International Journal of Computer Applications, 67(10), 13–17.

Sirait, K., Tulus, & Nababan, E. B. (2017). K-Means Algorithm Performance Analysis With Determining The Value Of Starting Centroid With Random And KD-Tree Method. IconICT, 1–6.

Yanthi, Purnama, C. I., & Marhaeni. (2015). Pengaruh Pendidikan, Tingkat Upah dan Pengangguran terhadap Persentase Penduduk Miskin di Kabupaten/Kota Provinsi Bali. Piramida, 11(2), 68–75.

Downloads

Published

2023-12-15

How to Cite

Aprizkiyandari, S., Satyahadewi , N., Pratama, A. N., Rivaldo, R., Nurdiansyah , S. I., & Helena, S. (2023). Implementasi K-Means Cluster untuk Menentukan Persebaran Tingkat Pengangguran. Empiricism Journal, 4(2), 400–406. https://doi.org/10.36312/ej.v4i2.1518

Issue

Section

Articles