Analisis Metode Klasifikasi Penyakit Bell's Palsy Menggunakan Machine Learning

Authors

  • Asmaul Husna RS Politeknik Medica Farma Husada Mataram
  • Reny Amalia Permata Politeknik Medica Farma Husada Mataram

DOI:

https://doi.org/10.36312/ej.v5i1.1610

Keywords:

Klasifikasi, Penyakit Bell’s Palsy, Machine Learning

Abstract

Bell’s Palsy adalah satu kondisi yang mempengaruhi saraf wajah, yang menyebabkan kelemahan atau kelumpuhan tiba-tiba pada otot di satu sisi wajah. Klasifikasi Penyakit Bells’ Palsy sangat penting untuk diagnosis dan prognosis yang akurat. Dalam beberapa tahun terakhir, Algoritma pembelajaran mesin telah dieskplorasi sebagai alat potensial untuk mengklasifikasikan penyakit Bell’s Palsy berdasarkan jenis data, seperti informasi klinis,  data pencitraan dan elektrodiagnostik. Dalam tinjauan Pustaka sistematis ini, kami menganalisis keadaan peneliti saat ini tentang penggunaan algoritma mesin learning untuk mengklasifikasikan penyakit Bell’s Palsy, dengan metode Sistematic Literatur Riview (SLR) dengan mengumpulkan hasil penting dari literatur yang dikaji. Hasil penemuan kami menunjukkan beberapa penelitian telah menggunakan berbagai jenis algoritma mesin learning seperti Support Vector Machine (SVM) dan Convolutional Neural Network (CNN). Algortima tersebut menunjukkan tingkat akurasi yang tinggi dalam mengklasifikasikan penyakit Bell’s Palsy dan memprediksi tingkat keparahan atau hasilnya. Namun penelitian lebih lanjut diperlukan untuk memvalidasi temuin ini dan mengeksplorasi potensi penggunaan jenis data lain untuk tujuan klasifikasi. Penggunaan algortima mesin learning untuk klasifikasi penyakit Bell’s palsy berpotensi meningkatkan akurasi diangnosisi dan prognosis serta meningkatkan penatalaksanaan kondisi ini secara keselruhan dengan menggunakan berbagai macam data dengan menganalisisnya secara akurat sehinga dokter dapat merencakan perawatan yang disesuaikan dengan kebutuhan unik pasien dengan memprediksi tingkat keparahan dan hasil pengobatan.

Analysis of Bell's Palsy Disease Classification Methods Using Machine Learning

Abstract

Bell's palsy is a condition that affects the facial nerves, causing sudden weakness or paralysis of the muscles on one side of the face. The classification of Bell's palsy disease is crucial for accurate diagnosis and prognosis. In recent years, machine learning algorithms have been explored as a potential tool to classify Bell’s palsy disease based on data types such as clinical information, imaging data, and electrodiagnostics. In this systematic review of the library, we analyzed the current state of research on the use of machine learning algorithms to classify Bell’s palsy disease using the Riview Systematic Literature (SLR) method by collecting important results from the literature studied. Our findings suggest that some studies have used different kinds of machine learning algorithms, such as support vector machines (SVM) and convolutional neural networks . (CNN). The algorithm shows a high degree of accuracy in classifying Bell's palsy disease and predicting its severity or outcome. But further research is needed to validate these findings and explore the potential use of other types of data for classification purposes. Using machine learning algorithms to classify Bell's palsy disease has the potential to improve the accuracy of anginosis and prognosis as well as the implementation of the condition in a comprehensive way by using a wide range of data and analyzing it accurately, so long as doctors can plan treatment that is tailored to the unique needs of patients by predicting the severity and outcome of treatment.

Downloads

Download data is not yet available.

References

Airi, F. A. H., Suprapti, T., & Bahtiar, A. (2023). Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke. E-Link: Jurnal Teknik Elektro dan Informatika 18(1): 73–79.

Alamsyah, D., & Pratama, D. (2020). Implementasi Convolutional Neural Networks (CNN) Untuk Klasifikasi Ekspresi Citra Wajah Pada FER-2013 Dataset. (JurTI) Jurnal Teknologi Informasi 4(2): 350–55.

Andesti, C. L., & Sirait, W. (2022). Diagnosa Penyakit Bells Palsy Menerapkan Metode Tsukamoto. JOSTECH Journal of Science and Technology, 2(2), https://doi.org/10.15548/jostech.v2i2.4366.

Anggraini, L., & Yamasari, Y. (2023). Klasifikasi Citra Wajah Untuk Rentang Usia Menggunakan Metode Artificial Neural Network. Journal of Informatics and Computer Science (JINACS) 5(02): 185–92.

Azmi, B. N., Hermawan, A., & Avianto, D. (2023). Analisis Pengaruh Komposisi Data Training Dan Data Testing Pada Penggunaan PCA Dan Algoritma Decision Tree Untuk Klasifikasi Penderita Penyakit Liver. JTIM: Jurnal Teknologi Informasi dan Multimedia 4(4): 281–90.

Chen, X., Li, Y., Zheng, H., Hu, K., Zhang, H., Zhao, L., Li, Y., Liu, L., Mang, L., & Yu, S. (2009). A randomized controlled trial of acupuncture and moxibustion to treat Bell's palsy according to different stages: design and protocol. Contemporary clinical trials, 30(4), 347–353. https://doi.org/10.1016/j.cct.2009.02.006

Cooper, L., Branagan-Harris, M., Tuson, R., & Nduka, C. (2017). Lyme disease and Bell’s palsy: An epidemiological study of diagnosis and risk in England. British Journal of General Practice, 67(658), e329–e335. https://doi.org/10.3399/bjgp17X690497

Diantarakita, D., Widodo, A. W., & Rahman, M. A. (2019). Ekstraksi Ciri pada Klasifikasi Tipe Kulit Wajah Menggunakan Metode Local Binary Pattern. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(8), https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6072

Farhan, M. R., Widodo, A. W., & Rahman, M. A. (2019). Ekstraksi Ciri Pada Klasifikasi Tipe Kulit Wajah Menggunakan Metode Haar Wavelet. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(3), 2903–2909. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4840

Goker, A., Alagoz, M., Korkmaz, G., Y?lmazer, A., Berkiten, G., Tutar, B., … & Özdemir, E. (2019). Evaluation of serum ischaemia-modified albumin levels in patients with bell's palsy. The Journal of Laryngology & Otology, 133(09), 810-813. https://doi.org/10.1017/s0022215119001683

Kim, S. Y., Lee, C., Lim, J. S., Kong, I. G., Sim, S., & Choi, H. G. (2019). Increased risk of bell palsy in patient with migraine. Medicine, 98(21), e15764. https://doi.org/10.1097/md.0000000000015764

Kim, S. Y., Oh, D. J., Park, B., & Choi, H. G. (2020). Bell’s palsy and obesity, alcohol consumption and smoking: a nested case-control study using a national health screening cohort. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61240-7

Knoedler, L. et al. (2022). “A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy.” Journal of Personalized Medicine 12(10). doi:10.3390/jpm12101739.

Koirala, K. (2020). Epidemiological study of bell's palsy in patients from western nepal. Eastern Green Neurosurgery, 2(2), 41-46. https://doi.org/10.3126/egn.v2i2.29259

Laia, F. H., Rosnelly, R., Naswar, A., Buulolo, K., & Lase, M. C. M. (2023). Deteksi Pengenalan Wajah Orang Berbasis AI Computer Vision. Jurnal Teknologi Informasi Mura, 15(1), 62–72. https://doi.org/10.32767/jti.v15i1.2024.

Lee, S., Lim, J., Oh, D., Park, B., Park, I., & Choi, H. (2020). The association between bell's palsy and rheumatoid arthritis. Medicine, 99(12), e19568. https://doi.org/10.1097/md.0000000000019568

Li, S., Guo, R., Liang, X., Wu, Y., Cao, W., Zhang, Z., … & Liang, H. (2015). High-frequency ultrasound as an adjunct to neural electrophysiology: evaluation and prognosis of bell's palsy. Experimental and Therapeutic Medicine, 11(1), 77-82. https://doi.org/10.3892/etm.2015.2878

Liu, Y. (2024). Association between hypertensive disorders and bell’s palsy in pregnancy: protocol for a systematic review and meta-analysis. BMJ Open, 14(5), e080322. https://doi.org/10.1136/bmjopen-2023-080322

Martawireja, A. R. H., Purnama, H. M., & Rahmawati, A. N. (2020). Analisis Metode Pengenalan Wajah Two Dimensial Principal Component Analysis (2DPCA) dan Kernel Fisher Discriminant Analysis Menggunakan Klasifikasi KNN (K-Nearest Neighbor). JTRM (Jurnal Teknologi dan Rekayasa Manufaktur), 2(2), https://doi.org/10.48182/jtrm.v2i2.30

Monini, S., Ripoli, S., Filippi, C., Fatuzzo, I., Salerno, G., Covelli, E., Bini, F., Marinozzi, F., Marchelletta, S., Manni, G., & Barbara, M. (2021). An objective, markerless videosystem for staging facial palsy. European Archives of Oto-Rhino-Laryngology, 278(9), 3541–3550. https://doi.org/10.1007/s00405-021-06682-z

Monisha, G. S., Yogashree, G. S., Baghyalaksmi, R., & Haritha, P. (2023). Enhanced Automatic Recognition of Human Emotions Using Machine Learning Techniques. Procedia Computer Science, 218, 375–382. https://doi.org/10.1016/j.procs.2023.01.020

Muthohhar, J. D., & Prihanto, A. (2023). Analisis Perbandingan Algoritma Klasifikasi Untuk Penyakit Jantung.” Journal of Informatics and Computer Science 04.

Nurkhasanah, N., & Murinto, M. (2022). Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network. Sainteks, 18(2), Article 2. https://doi.org/10.30595/sainteks.v18i2.13188

Rahbar, A. R., Baxter, R., Rasgon, B., Ray, P., Black, S., Klein, J. O., & Klein, N. P. (2012). Epidemiologic and Clinical Features of Bell’s Palsy among Children in Northern California. Neuroepidemiology, 38(4), 252–258. https://doi.org/10.1159/000338303

Rasyid, M., Zainuddin, Z., & Andani, A. (2019, June 14). Early Detection of Health Kindergarten Student at School Using Image Processing Technology. 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia. https://eudl.eu/doi/10.4108/eai.2-5-2019.2284609

Singh, A., & Deshmukh, P. (2022). Bell’s Palsy: A Review. Cureus, 14(10), e30186. https://doi.org/10.7759/cureus.30186

Situmeang, N., & Sulindawaty, S. (2019). Sistem Pakar Mendiagnosa Penyakit Saraf Pusat Manusia dengan Metode Certainty Factor. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 4(1), https://doi.org/10.33395/remik.v4i1.10224

Wu, W. (2023). Mendelian randomization study of inflammatory cytokines and bell's palsy.. https://doi.org/10.21203/rs.3.rs-3288978/v1

Zhang, W., Xu, L., Luo, T., Wu, F., Zhao, B., & Li, X. (2020). The etiology of Bell’s palsy: A review. Journal of Neurology, 267(7), 1896–1905. https://doi.org/10.1007/s00415-019-09282-4

Zhang, Y., Zhang, J., Xiao, Y., Zhao, N., Wu, J., Wu, H., Li, W., Li, X., Ma, M., & Song, A. (2022). Early Recognition of Facial Paralysis for Rehabilitation of Stroke Patients Using Visual Perception and AI-Assisted Analysis. 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), 25–30. https://doi.org/10.1109/ICARM54641.2022.9959402

Zhuang, Y., McDonald, M. M., Aldridge, C. M., Hassan, M. A., Uribe, O., Arteaga, D., Southerland, A. M., & Rohde, G. K. (2021). Video-Based Facial Weakness Analysis. IEEE Transactions on Bio-Medical Engineering, 68(9), 2698–2705. https://doi.org/10.1109/TBME.2021.3049739

Zhuang, Y., McDonald, M., Uribe, O., Yin, X., Parikh, D., Southerland, A. M., & Rohde, G. K. (2020). Facial Weakness Analysis and Quantification of Static Images. IEEE Journal of Biomedical and Health Informatics, 24(8), 2260–2267. https://doi.org/10.1109/JBHI.2020.2964520

Zhuang, Y., Uribe, O., McDonald, M., Yin, X., Parikh, D., Southerland, A., & Rohde, G. (2019). F-DIT-V: An Automated Video Classification Tool for Facial Weakness Detection. IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 1–4. https://doi.org/10.1109/BHI.2019.8834563

Downloads

Published

2024-06-30

How to Cite

RS, A. H., & Permata, R. A. (2024). Analisis Metode Klasifikasi Penyakit Bell’s Palsy Menggunakan Machine Learning. Empiricism Journal, 5(1), 127–139. https://doi.org/10.36312/ej.v5i1.1610

Issue

Section

Articles