Pengaruh Variasi Komposisi Sekam Padi dan Arang Tempurung Kelapa terhadap Nilai Kalor dan Laju Pembakaran Biobriket
DOI:
https://doi.org/10.36312/ej.v5i2.2027Keywords:
Biobriket, Sekam Padi, Tempurung Kelapa, Nilai Kalor, Laju PembakaranAbstract
Penelitian ini bertujuan untuk mengevaluasi pengaruh variasi komposisi sekam padi (ASP) dan arang tempurung kelapa (ATK) terhadap karakteristik biobriket, seperti kadar air, kadar abu, densitas, nilai kalor, dan laju pembakaran. Variasi komposisi bahan adalah 0%-90% ASP dan 90%-0% ATK, dengan perekat tepung tapioka sebesar 10%. Hasil penelitian menunjukkan bahwa nilai kalor tertinggi (9.034 kkal/g) ditemukan pada komposisi 45% ASP + 45% ATK, sementara laju pembakaran tertinggi (0,7254 g/menit) pada komposisi 90% ASP + 0% ATK. Biobriket dengan komposisi optimal (45% ASP + 45% ATK) memiliki keseimbangan antara nilai kalor tinggi dan pembakaran stabil. Semua sampel memenuhi standar SNI untuk kadar air (maksimal 8%) dan nilai kalor (minimal 5000 kkal/g). Penelitian ini menunjukkan potensi biobriket berbasis limbah pertanian sebagai bahan bakar alternatif yang berkelanjutan.
The Effect of Rice Husk and Coconut Shell Charcoal Composition Variations on the Calorific Value and Combustion Rate of Biobriquettes
Abstract
This study aims to evaluate the effect of rice husk (ASP) and coconut shell charcoal (ATK) composition variations on biobriquette characteristics, including moisture content, ash content, density, calorific value, and combustion rate. The composition variations ranged from 0%-90% ASP and 90%-0% ATK, with 10% tapioca starch as a binder. Results indicated the highest calorific value (9.034 kkal/g) at 45% ASP + 45% ATK, while the highest combustion rate (0.7254 g/min) was observed at 90% ASP + 0% ATK. Biobriquettes with an optimal composition (45% ASP + 45% ATK) achieved a balance of high calorific value and stable combustion. All samples met the SNI standards for moisture content (maximum 8%) and calorific value (minimum 5000 kkal/g). This study highlights the potential of agricultural waste-based biobriquettes as a sustainable alternative fuel source.
Downloads
References
Ahmed, A., Yub Harun, N., Waqas, S., Arshad, U., & Ghalib, S. A. (2024). Optimization of operational parameters using artificial neural network and support vector machine for bio-oil extracted from rice husk. ACS Omega, 9(24), 26540-26548. https://doi.org/10.1021/acsomega.4c03131
Aliah, H., Winarti, I., Iman, R. N., Setiawan, A., Safarina, R., & Sawitri, A. (2023). Influence of sieve size on calorific value and proximate properties of bio-briquette composites. Journal of Ecological Engineering, 24(7), 25-34. https://doi.org/10.12911/22998993/163309
Aljarwi, M. A., Pangga, D., & Ahzan, S. (2020). Uji laju pembakaran dan nilai kalor briket wafer sekam padi dengan variasi tekanan. ORBITA: Jurnal Kajian, Inovasi Dan Aplikasi Pendidikan Fisika, 6(2), 200. https://doi.org/10.31764/orbita.v6i2.2645
Amin, J. M., Yuanda, R., & Hidayat, S. (2023). Pembuatan Briket Sekam Padi (Oryza Sativa L.) sebagai Bahan Bakar Alternatif Pengganti Kayu Bakar. Prosiding Semnas First, 1(2), 53–64.
Anggoro, D. D., Wibawa, M. H. D., & Fathoni, M. Z. (2017). Pembuatan Briket Arang dari Campuran Tempurung Kelapa dan Serbuk Gergaji Kayu Sengon. TEKNIK, 38(2), 76–80. https://doi.org/10.14710/teknik.v38i2.13985
Anizar, H., Sribudiani, E., & Somadona, S. (2020). Pengaruh Bahan Perekat Tapioka dan Sagu terhadap Kualitas Briket Arang Kulit Buah Nipah. Perennial, 16(1), 11–17.
Arundina, I., Diyatri, I., Juliastuti, W. S., Budhy, T. I., Surboyo, M. D. C., Iskandar, B., … & Saputra, G. (2022). Nanoparticles of liquid smoke rice husk inhibit porphyromonas gingivalis. European Journal of Dentistry, 17(02), 337-341. https://doi.org/10.1055/s-0042-1749154
Awulu, J. O., Omale, P. A., & Ameh, J. (2018). Comparative analysis of calorific values of selected agricultural wastes. Nigerian Journal of Technology, 37(4), 1141. https://doi.org/10.4314/njt.v37i4.38
Bappah, M., Bradna, J., Mala?ák, J., & Vaculik, P. (2022). Viability of some african agricultural by-products as a feedstock for solid biofuel production. Research in Agricultural Engineering, 68(4), 210-215. https://doi.org/10.17221/74/2021-rae
Bediako, M., Adjaottor, A. A., Gawu, S. K. Y., & Amankwah, E. O. (2020). Compressive strength and durability properties of pozzolan obtained from co-fired clay and rice husk. Cogent Engineering, 7(1), 1811453. https://doi.org/10.1080/23311916.2020.1811453
Chamoli, P., Jhildiyal, S., Agrawal, P., Kumar, N., & Singh, P. (2024). Recent advances in the processing of napier grass (pennisetum purpureum schumach) as a potential bioenergy crop for bioethanol production. Journal of Applied Biology &Amp; Biotechnology. https://doi.org/10.7324/jabb.2024.154513
Chun, J. and Lee, J. H. (2020). Recent progress on the development of engineered silica particles derived from rice husk. Sustainability, 12(24), 10683. https://doi.org/10.3390/su122410683
Colombo, R., Moretto, G., Barberis, M., Frosi, I., & Papetti, A. (2023). Rice byproduct compounds: from green extraction to antioxidant properties. Antioxidants, 13(1), 35. https://doi.org/10.3390/antiox13010035
Fathurahman, R. and Surjosatyo, A. (2022). Utilization of rice husks as a fuel for gasification – a review. IOP Conference Series: Earth and Environmental Science, 1034(1), 012065. https://doi.org/10.1088/1755-1315/1034/1/012065
Firdaus, R., Harun, S. N., Hanafiah, M. M., Mat Deli, M., & Adhikary, S. K. (2024). Life cycle assessment of rice straw for energy valorization: a comprehensive review of methodological trends and future outlooks. WIREs Energy and Environment, 13(3). https://doi.org/10.1002/wene.520
Ikelle, I. I., Sunday, N. J., Nworie, F. S., John, J. G., Okechukwu, O. J., & Elom, N. (2020). Thermal analyses of briquette fuels produced from coal dust and groundnut husk. Acta Chemica Malaysia, 4(1), 24-27. https://doi.org/10.2478/acmy-2020-0004
Illankoon, W. A. M. A. N., Milanese, C., Collivignarelli, M. C., & Sorlini, S. (2023). Value chain analysis of rice industry by products in a circular economy context: a review. Waste, 1(2), 333-369. https://doi.org/10.3390/waste1020022
Jannah, B. L., Pangga, D., & Ahzan, S. (2022). Pengaruh Jenis dan Persentase Bahan Perekat Biobriket Berbahan Dasar Kulit Durian terhadap Nilai Kalor Dan Laju Pembakaran. Lensa: Jurnal Kependidikan Fisika, 10(1), 16–23.
Jurnal, R. T. (2017). Potensi Pemanfaatan Biomassa Sekam Padi untuk Pembangkit Listrik Melalui Teknologi Gasifikasi: Isworo Pujotomo. Energi & Kelistrikan, 9(2), 126–135.
Kalsum, U. (2016). Pembuatan Briket Arang dari Campuran Limbah Tongkol Jagung, Kulit Durian dan Serbuk Gergaji Menggunakan Tepung Tapioka. Distilasi, 1, 42–50.
Krisnaningsih, E., Arkeman, Y., Hambali, E., & Marimin, M. (2022). Decision model for determining the feasibility of rice-based bioenergy supply chain development area with fuzzy logic-ahp approach. IOP Conference Series: Earth and Environmental Science, 1034(1), 012007. https://doi.org/10.1088/1755-1315/1034/1/012007
Lee, Y. and Tsai, W. (2022). Overview of biomass-to-energy supply and promotion policy in taiwan. Energies, 15(18), 6576. https://doi.org/10.3390/en15186576
Li, Y., Liu, W., Zhang, X., Wang, S., Yadegari, R., & Wang, J. (2023). Editorial: advances in crop biomass production based on multi-omics approach. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1155442
Maharani, F., Muhammad, M., Jalaluddin, J., Kurniawan, E., & Ginting, Z. (2022). Pembuatan Briket dari Arang Serbuk Gergaji Kayu dengan Perekat Tepung Singkong sebagai Bahan Bakar Alternatif. Jurnal Teknologi Kimia Unimal, 11(2), 207–216.
Makul, N., Fediuk, R., Amran, M., Al-Akwaa, M. S., Pra?at, K., Nemova, D., … & Sulman, M. G. (2021). Utilization of biomass to ash: an overview of the potential resources for alternative energy. Materials, 14(21), 6482. https://doi.org/10.3390/ma14216482
Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13(2), 262. https://doi.org/10.3390/ma13020262
Marín-Calvo, N., González-Serrud, S., & James-Rivas, A. (2023). Thermal insulation material produced from recycled materials for building applications: cellulose and rice husk-based material. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1271317
Masthura, M. (2019). Analisis Fisis dan Laju Pembakaran Briket Bioarang dari Bahan Pelepah Pisang. Elkawnie: Journal of Islamic Science and Technology, 5(1), 58–66.
Mili, M., Jaiswal, A., Hada, V., Sagiri, S. S., Pal, K., Chowdhary, R., … & Verma, S. (2021). Development of graphene quantum dots by valorizing the bioresources – a critical review. ChemistrySelect, 6(37), 9990-10001. https://doi.org/10.1002/slct.202102353
Mohamad, H. (2021). Bioactivity and biocompatibility properties of sustainable wollastonite bioceramics from rice husk ash/rice straw ash: a review. Materials, 14(18), 5193. https://doi.org/10.3390/ma14185193
Nnadiukwu, C. U., Onyeike, E. N., Ikewuchi, C. C., & Patrick-Iwuanyanwu, K. C. (2023). Ameliorative effect of rice husk methanol extract on liver and kidney toxicities induced by subchronic codeine administration. International Journal of Food Science, 2023, 1-8. https://doi.org/10.1155/2023/3940759
Othman, F. E. C., Harun, N. Y., Bilad, M. R., Jaafar, J., Aziz, F., & Salleh, W. N. W. (2020). Novel activated carbon nanofibers composited with cost-effective graphene-based materials for enhanced adsorption performance toward methane. Polymers, 12(9), 2064. https://doi.org/10.3390/polym12092064
Peres, C. B., Resende, P., Nunes, L. J. R., & Morais, L. C. d. (2022). Circular economy: a comprehensive review of eco-friendly wollastonite applications. Sustainability, 14(5), 3070. https://doi.org/10.3390/su14053070
Pramana, Y. B., A, D. A., & AR, N. (2022). Improving the heat value of biobriquettes made from rice husk and cabbage with the addition of palm oil. Tibuana, 5(2), 120-126. https://doi.org/10.36456/tibuana.5.2.5896.120-126
Pratama, A. A., Shadewa, D., & Muhyin, I. (2018). Pengaruh Komposisi Bahan Dasar dan Variasi Jenis Perekat terhadap Nilai Kalor, Kadar Air, Kadar Abu Pada Briket campuran Sekam Padi dan Tempurung Kelapa. Publikasi Online Mahasiswa Teknik Mesin, 1(2), 1–10.
Punvittayagul, C., Chariyakornkul, A., Sankam, P., & Wongpoomchai, R. (2021). Inhibitory effect of thai purple rice husk extract on chemically induced carcinogenesis in rats. Molecules, 26(2), 360. https://doi.org/10.3390/molecules26020360
Putra, N., Zhou, J., & Zadpoor, A. A. (2023). Sustainable sources of raw materials for additive manufacturing of bone?substituting biomaterials. Advanced Healthcare Materials, 13(1). https://doi.org/10.1002/adhm.202301837
Qistina, I., & Dede Sukandar, T. (2016). Kajian Kualitas Briket Biomassa dari Sekam Padi dan Tempurung Kelapa. https://repository.uinjkt.ac.id/dspace/handle/123456789/67723
Rhofita, E. I., Rachmat, R., Mayer, M., & Montastruc, L. (2022). An energy potential estimation of rice residue in indonesia: a case study in east java. IOP Conference Series: Earth and Environmental Science, 1024(1), 012029. https://doi.org/10.1088/1755-1315/1024/1/012029
Rusmayadi, G., Iffah, N., Ninasari, A., Laksmono, R., Rais, R., & Indriyani, I. (2023). Community empowerment through utilization of rice husk waste in cirebon regency. Amalee: Indonesian Journal of Community Research and Engagement, 4(2), 571-584. https://doi.org/10.37680/amalee.v4i2.3012
Sanoja-López, K. A., Loor-Molina, N. S., & Luque, R. (2023). Rice waste feedstocks: a review of alternatives for their conversion into high-value added products. BioResources, 19(1). https://doi.org/10.15376/biores.19.1.sanoja-lopez
Scuto, F. R., Ciarlantini, C., Chiappini, V., Pietrelli, L., Piozzi, A., & Girelli, A. M. (2023). Design of a 3d amino-functionalized rice husk ash nano-silica/chitosan/alginate composite as support for laccase immobilization. Polymers, 15(14), 3127. https://doi.org/10.3390/polym15143127
Seikh, Z., Sekh, M., Kunar, S., Kibria, G., Haque, R., & Haidar, S. (2022). Rice husk ash reinforced aluminium metal matrix composites: a review. Materials Science Forum, 1070, 55-70. https://doi.org/10.4028/p-u8s016
Sinha, S., Pandey, A., B, S. N., & Prasad, B. D. (2023). Preliminary study of agricultural waste as biochar incorporated into cementitious materials. Journal of Architectural Environment &Amp; Structural Engineering Research, 6(2), 59-79. https://doi.org/10.30564/jaeser.v6i2.5695
Siu, K., Pingak, R. K., & Johannes, A. Z. (2021). Kajian Sifat Fisis dan Kimia Bio-Briket Campuran Tempurung Kelapa dan Sekam Padi. Magnetic: Research Journal of Physics and It’s Application, 1(1), 18–25.
Sofyana, S., Iqfal, M., & Zuhra, M. R. (2021). Pembuatan Biobriket dari Limbah Sekam Padi dan Tempurung Kelapa Dengan Perekat Tepung Tapioka. Jurnal Inovasi Ramah Lingkungan, 2(1), 4.
Sohal, N., Singla, S. K., Malode, S. J., Basu, S., Maity, B., & Shetti, N. P. (2023). Bioresource-based graphene quantum dots and their applications: a review. ACS Applied Nano Materials, 6(13), 10925-10943. https://doi.org/10.1021/acsanm.3c02185
Stiawan, R., Ahzan, S., & Pangga, D. (2023). Pengaruh Variasi Bahan Perekat Biobriket Berbahan Dasar Kulit Kacang Tanah terhadap Nilai Kalor dan Laju Pembakaran. Jurnal Ilmiah IKIP Mataram, 9(1), 20–26.
Sukarti, S., Pangga, D., & Ahzan, S. (2023). Pengaruh Persentasi Perekat Briket Berbahan Dasar Tempurung Kelapa terhadap Nilai Kalor dan Laju Pembakaran. Jurnal Ilmiah IKIP Mataram, 10(1), 25–31.
Tan??, N. A., Okur, O., Duran, O., Yilmaz, E., Türkmen, M., Ariff, A. H. M., … & Calin, R. (2021). An investigation of production and properties of rha reinforced hybrid composites by vacuum infiltration method. Uluslararas? Muhendislik Arastirma Ve Gelistirme Dergisi, 13(2), 704-710. https://doi.org/10.29137/umagd.913816
Tsai, C. and Chang, Y. (2020). Effects of rice husk biochar on carbon release and nutrient availability in three cultivation age of greenhouse soils. Agronomy, 10(7), 990. https://doi.org/10.3390/agronomy10070990
Ubi, P. A., Adah, P. U., Ademoh, N. A., Salawu, A. A., Hassan, A. B., Dashe, J. D., … & Oyeyemi, S. W. (2022). Rice husk ash reinforced natural rubber composites: effect of benzene diazonium salt treatment.. Nigerian Journal of Technology, 41(5), 879-886. https://doi.org/10.4314/njt.v41i5.8
Widjaya, D., Sinatrya, A. N., Kusumandaru, W., Jupriyanto, A., & Nijkamp, R. T. (2022). Utilization of several agricultural wastes into briquette as renewable energy source. PLANTA TROPIKA: Jurnal Agrosains (Journal of Agro Science), 10(2), 169-176. https://doi.org/10.18196/pt.v10i2.13773
Yodda, S., Laohasiriwong, S., & Rambo, A. T. (2021). Use of organic materials to maintain soil quality by thai-lao rice farmers in northeast thailand. Forest and Society, 559-574. https://doi.org/10.24259/fs.v5i2.14044
Yopianita, A., Syarif, A., Yerizam, u., & Rusdianasari, R. (2022). Biocoal characterization as an environmentally friendly alternative energy innovation composite variations of gasified char with coconut shell charcoal. Indonesian Journal of Fundamental and Applied Chemistry, 7(2), 68-79. https://doi.org/10.24845/ijfac.v7.i2.68
Zareihassangheshlaghi, A., Dizaji, H. B., Zeng, T., Huth, P., Ruf, T., Denecke, R., & Enke, D. (2020). Behavior of metal impurities on surface and bulk of biogenic silica from rice husk combustion and the impact on ash-melting tendency. ACS Sustainable Chemistry &Amp; Engineering, 8(28), 10369-10379. https://doi.org/10.1021/acssuschemeng.0c01484
Zhang, Y., Liu, X., Zhao, R., Zhang, J., Zhang, L., Zhang, W., & Li, H. (2024). The green preparation of mesoporous wo3/sio2 and its application in oxidative desulfurization. Catalysts, 14(2), 103. https://doi.org/10.3390/catal14020103
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nurul Yaqin Rusna Dewi, Sukainil Ahzan, Dwi Pangga
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.