Analisis Ramalan Penjualan Produk Kopi Robusta pada UMKM CV. Brene Robusta Gunung Ambang Kotamobagu

Authors

  • Agus Irianto Paputungan Sekolah Tinggi Ilmu Ekonomi Widya Darma Kotamobagu
  • Moh. Mustaqim Mokoagow Sekolah Tinggi Ilmu Ekonomi Widya Darma Kotamobagu

DOI:

https://doi.org/10.36312/ej.v5i2.2170

Keywords:

Peramalan Penjualan, Kopi Robusta, Analisis Least Square, Analisis Tematik

Abstract

Penelitian ini bertujuan untuk meramalkan penjualan produk kopi Robusta pada UMKM CV. Brene Robusta Gunung Ambang Kotamobagu dengan pendekatan kombinasi metode kuantitatif dan kualitatif. Data historis penjualan dari tahun 2020 hingga 2023 dianalisis menggunakan metode Least Square untuk memprediksi tren penjualan hingga tahun 2026. Pendekatan kualitatif dilakukan melalui wawancara mendalam untuk memahami faktor-faktor eksternal seperti perilaku konsumen, dinamika pasar, dan kondisi ekonomi regional. Hasil penelitian menunjukkan pola musiman yang konsisten. Pada tahun 2020, penjualan tertinggi terjadi pada bulan Januari dengan volume 200 kg. Penjualan menurun secara bertahap selama musim kemarau (April hingga September), mencapai titik terendah sebesar 120 kg pada bulan September. Sebaliknya, selama musim hujan (Oktober hingga Maret), penjualan meningkat, mencapai 180 kg pada bulan Desember. Pola serupa terjadi pada tahun-tahun berikutnya, di mana penjualan cenderung lebih tinggi pada musim hujan dibandingkan musim kemarau.Perilaku konsumen di pasar lokal menunjukkan sensitivitas tinggi terhadap fluktuasi harga. Misalnya, kenaikan harga kopi dari Rp50.000 per kg menjadi Rp55.000 pada Maret 2020 menyebabkan penurunan penjualan dari 200 kg menjadi 160 kg. Namun, ketika harga kembali turun menjadi Rp53.000 pada April, penjualan meningkat menjadi 190 kg. Integrasi analisis kuantitatif dan wawasan kualitatif memberikan dasar yang kuat untuk perencanaan strategis. Dengan memahami pola musiman, sensitivitas harga, dan pengaruh ekonomi lokal, UMKM dapat mengoptimalkan manajemen produksi, stok, dan pemasaran. Prediksi yang lebih akurat memungkinkan UMKM CV. Brene Robusta meningkatkan profitabilitas meskipun menghadapi tantangan pasar yang dinamis. Penelitian ini menekankan pentingnya penggunaan data untuk mendukung pengambilan keputusan bisnis.

Sales Forecast Analysis of Robusta Coffee Products at MSME CV. Brene Robusta Gunung Ambang Kotamobagu
Abstract
This study aims to forecast the sales of Robusta coffee products at MSME CV. Brene Robusta Gunung Ambang Kotamobagu using a combination of quantitative and qualitative approaches. Historical sales data from 2020 to 2023 were analyzed using the Least Square method to predict sales trends up to 2026. A qualitative approach was conducted through in-depth interviews to understand external factors such as consumer behavior, market dynamics, and regional economic conditions.The findings reveal a consistent seasonal pattern. In 2020, the highest sales occurred in January, with a volume of 200 kg. Sales gradually declined during the dry season (April to September), reaching the lowest point of 120 kg in September. Conversely, during the rainy season (October to March), sales increased, peaking at 180 kg in December. Similar patterns were observed in subsequent years, with sales being higher during the rainy season compared to the dry season. Local consumer behavior indicates high sensitivity to price fluctuations. For instance, a price increase from Rp50,000 per kg to Rp55,000 in March 2020 caused sales to drop from 200 kg to 160 kg. However, when the price decreased to Rp53,000 in April, sales rose to 190 kg. The integration of quantitative analysis and qualitative insights provides a strong foundation for strategic planning. By understanding seasonal patterns, price sensitivity, and the impact of local economic conditions, MSMEs can optimize production, inventory, and marketing strategies. More accurate predictions enable CV. Brene Robusta to improve profitability despite dynamic market challenges. This study highlights the importance of data-driven decision-making in business.

Downloads

Download data is not yet available.

References

Amir, W. K. H. W. K. (2023). Sales Forecasting Using Convolution Neural Network. Journal of Advanced Research in Applied Sciences and Engineering Technology, 30(3), 290–301. https://doi.org/10.37934/araset.30.3.290301

Anh, N. H., & Bokelmann, W. (2019). Determinants of Smallholders’ Market Preferences: The Case of Sustainable Certified Coffee Farmers in Vietnam. Sustainability, 11(10), 2897. https://doi.org/10.3390/su11102897

Byrareddy, V., Kouadio, L., Mushtaq, S., & Stone, R. (2019). Sustainable Production of Robusta Coffee Under a Changing Climate: A 10-Year Monitoring of Fertilizer Management in Coffee Farms in Vietnam and Indonesia. Agronomy, 9(9), 499. https://doi.org/10.3390/agronomy9090499

Cheserek, J. J., Ngugi, K., Muthomi, J. W., & Omondi, C. O. (2020). Assessment of Arabusta Coffee Hybrids [Coffea Arabica L. X Tetraploid Robusta (Coffea Canephora )] for Green Bean Physical Properties and Cup Quality. African Journal of Food Science, 14(5), 119–127. https://doi.org/10.5897/ajfs2019.1852

DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of Coffee Growth and Production. Brazilian Journal of Plant Physiology, 19(4), 485–510. https://doi.org/10.1590/s1677-04202007000400014

Fromm, I. (2022). Building Resilient Value Chains After the Impact of the COVID-19 Disruption: Challenges for the Coffee Sector in Central America. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.775716

Hamza, M., Abolghasemi, M., & Alvandi, A. O. (2021). Forecasting Sales With Bayesian Networks: A Case Study of a Supermarket Product in the Presence of Promotions. https://doi.org/10.36334/modsim.2021.m9.hamza

Harianto, R. A., & Sari, P. N. (2021). Strategic Digitalization of UMKM Business as an Alternative to Survive the COVID-19 Pandemic. Linguistics and Culture Review, 5(S1), 617–623. https://doi.org/10.21744/lingcure.v5ns1.1446

Irwantoro, R. J. (2023). The Effect of Soaking Stainless Steel Orthodontics Bracket With Robusta Coffee (Coffea Canephora) on the Release of Fe Ions. Jurnal Kedokteran Gigi Terpadu, 5(1). https://doi.org/10.25105/jkgt.v5i1.17037

Kolková, A. (2020). The Application of Forecasting Sales of Services to Increase Business Competitiveness. Journal of Competitiveness, 12(2), 90–105. https://doi.org/10.7441/joc.2020.02.06

Ramos, P., Santos, N., & Rebelo, R. (2015). Performance of State Space and ARIMA Models for Consumer Retail Sales Forecasting. Robotics and Computer-Integrated Manufacturing, 34, 151–163. https://doi.org/10.1016/j.rcim.2014.12.015

Reis, T. A. D. dos, Conti, A. J. D., Barrientos, E. A. L., Mori, A. L. B., & Benassi, M. d. T. (2019). Instant Coffee With Steamed PVA Beans: Physical-Chemical and Sensory Aspects. Ciência E Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943026119

Swari, M., Qusyairi, M. S., Mandyartha, E. P., & Wahanani, H. E. (2021). Business Intelligence System Using Simple Moving Average Method (Case Study?: Sales Medical Equipment at PT. Semangat Sejahtera Bersama). Journal of Physics Conference Series, 1899(1), 12121. https://doi.org/10.1088/1742-6596/1899/1/012121

Wibowo, B. Y., Setiawan, A., Malebra, I., Nugroho, B. S., Ayuwardani, M., Sulistiyani, E., & Anuar, A. (2022). Digital Marketing Training in the “Madura” Barbershop Business in Semarang City as a Solution to Msmes’ Problems in the Era of the Marketing Revolution 5.0. International Journal of Community Service, 2(4), 407–412. https://doi.org/10.51601/ijcs.v2i4.148

Zhao, K., & Wang, C. (2017). Sales Forecast in E-Commerce Using Convolutional Neural Network. https://doi.org/10.48550/arxiv.1708.07946

Downloads

Published

2024-12-31

How to Cite

Paputungan, A. I., & Mokoagow, M. M. (2024). Analisis Ramalan Penjualan Produk Kopi Robusta pada UMKM CV. Brene Robusta Gunung Ambang Kotamobagu. Empiricism Journal, 5(2), 615–623. https://doi.org/10.36312/ej.v5i2.2170

Issue

Section

Articles