Characterization of Crystal Structures and Magnetic Properties of Polyethylene Glycol (PEG-4000) and Silica Encapsulated Mn0.5Zn0.5Fe2O4 Nanoparticles

Authors

  • Edwin Laisina Pattimura University
  • Edi Suharyadi Universitas Gadjah Mada

DOI:

https://doi.org/10.36312/ej.v5i2.2273

Keywords:

Mn0.5Zn0.5Fe2O4,, Encapsulation, PEG-4000, Silica, Co-Precipitation

Abstract

In this research has been successfully Mn0.5Zn0.5Fe2O4 nanoparticles synthesis using co-precipitation method and their encapsulation by varying the concentration of polyethylene glycol (PEG-4000) and silica. The result of X-Ray Diffraction (XRD) characterization showed that Mn0.5Zn0.5Fe2O4 nanoparticles was mix spinel crystal structure. There was a phase other than Mn0.5Zn0.5Fe2O4 phase synthesized that a-Fe2O3 phase before and after encapsulated with PEG-4000 and silica. Encapsulation of silica has showed a new diffraction peak (222) because silica was crystal. Mn0.5Zn0.5Fe2O4 particle size before and after encapsulated with PEG-4000 (50% concentration) and silica (50% concentration) was 27.28±0.26 nm; 19.13±0.13 nm and 32.75±0.55 nm, respectively. The result of Transmission Electron Microscopy (TEM) characterization showed that before encapsulated with PEG-4000 and silica, occur agglomeration, meanwhile after encapsulated, the agglomeration was reduced. The result of Fourier Transform Infra Red (FTIR) characterization showed that Mn0.5Zn0.5Fe2O4 nanoparticles encapsulated with PEG-4000 there was shift in the wavenumbers 2878.00 cm-1 to 2885.51 cm-1 in the functional groups C-H and wavenumbers 1103.28 cm-1 to 1111.00 cm-1 in the functional groups C-O-C. Both of those functional groups was a constituent bond PEG-4000. Bonding metal oxide (M-O) was shift the wavenumbers 578.64 cm-1 to 570.93 cm-1, which was an uniform pattern of Mn0.5Zn0.5Fe2O4. Mn0.5Zn0.5Fe2O4 encapsulated with silica was shown in the wavenumbers 1049.28 cm-1; 779.24 cm-1; and 471.00 cm-1, which is the functional groups Si-O-Si (stretching). The characterization result of Mn0.5Zn0.5Fe2O4 magnetic properties with Vibrating Sample Magnetometer (VSM) showed that the values of coercivity, magnetization (at H = 15 kOe) and remnant magnetization was 47.55 Oe, 10.41 emu/g, 1.40 emu/g. After Mn0.5Zn0.5Fe2O4 nanoparticles encapsulated with PEG-4000 and silica was decreased amounting to 45.80 Oe, 45.64 Oe, 10.32 emu/g, 1.34 emu/g, 0.28 emu/g and 0.07 emu/g, respectively.

Downloads

Download data is not yet available.

References

Abdullah, M. (2009). Pengantar Nanosains. ITB. Bandung.

Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Research Letters, 7, pp. 144.

Al?Bermany, E., & Chen, B. (2020). Preparation and characterisation of poly(ethylene glycol)?adsorbed graphene oxide nanosheets. Polymer International, 70(3), 341-351. https://doi.org/10.1002/pi.6140

Al-husseny, W. H., Al-Sharuee, I. F., & Ali, B. R. (2023). Spectral and structural analysis for sodium silicate-based aerogel via normal drying pressure. Malaysian Journal of Science, 42(2), 47-55. https://doi.org/10.22452/mjs.vol42no2.7

Angermann, A., Hartmann, E., & Töpfer, J. (2010). Mixed-metal carbonates as precursors for the synthesis of nanocrystalline mn–zn ferrites. Journal of Magnetism and Magnetic Materials, 322(21), 3455-3459. https://doi.org/10.1016/j.jmmm.2010.06.044

Ashraf, M. A., Khan, A. M., Ahmad, M., & Sarfraz, M. (2015). Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment. Frontiers in Chemistry, 3. https://doi.org/10.3389/fchem.2015.00042

Baykal, A., Guner, S., Demira, A., Esira, S., & Genc, F. (2014). Effect of Zinc Substitution on Magneto-Optical Properties of Mn1-xZnxFe2O4/SiO2 Nanocomposites, Ceramics International, 40, pp. 13401–13408.

Ciriminna, R., & Pagliaro, M. (2013). Sol–gel microencapsulation of odorants and flavors: opening the route to sustainable fragrances and aromas. Chemical Society Reviews, 42(24), 9243. https://doi.org/10.1039/c3cs60286a

Dabagh, S., Haris, S. A., & Erta?, Y. N. (2023). Engineered polyethylene glycol-coated zinc ferrite nanoparticles as a novel magnetic resonance imaging contrast agent. ACS Biomaterials Science &Amp; Engineering, 9(7), 4138-4148. https://doi.org/10.1021/acsbiomaterials.3c00255

Deraz, N. M., & Alarifi, A., (2012). Preparation and Characterization of Nano-Magnetic Mn0.5Zn0.5Fe2O4 System, International Journal of Electrochemical Science, 7, pp. 5828-5836.

Horvat, G., Panti?, M., Knez, Ž., & Novak, Z. (2019). Preparation and characterization of polysaccharide - silica hybrid aerogels. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52974-0

Iacovi??, C., Florea, A., Scorus, L., Páll, E., Dudric, R., Moldovan, A., & Lucaciu, C. M. (2019). Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials, 9(10), 1489. https://doi.org/10.3390/nano9101489

Issa, B., Qadri, S., Obaidat, I. M., Bowtell, R. W., & Haik, Y. (2011). PEG Coating Reduces NMR Relaxivity of Mn0,5Zn0,5Gd0,02Fe1,98O4 Hyperthermia Nanoparticles, Journal of Magnetic Resonance Imaging, 34, pp. 1192-1198.

Kareem, S. H., Shamsuddin, M., & Lee, S. L. (2016). Effect of precipitation temperature on structural and magnetic features of polyethylene glycol-coated mn0.8zn0.2fe2 o 4 nanoparticles. Journal of Superconductivity and Novel Magnetism, 29(10), 2691-2697. https://doi.org/10.1007/s10948-016-3599-7

Kareem, S. H., Ati, A. A., Shamsuddin, M., & Lee, S. L. (2015). Nanostructural, Morphological and Magnetic Studies of PEG/Mn(1-x)Zn(x)Fe2O4 Nanoparticles Synthesized by Co-Precipitation, Ceramics International, 41, pp. 11702–11709.

Liu, C. P., Ming-Wei, L., Zhong, C., Juan-Ru, H., Yi-Ling, Ti., Tong, L., & Wen-Bo, M. (2007). Comparative Study of Magnesium Ferrite Nanocrystallites Prepared by Sol-Gel and Copresipitation Methods, J Mater Sci, 42, pp. 6133-6138.

Lu, A.H., Salabas, E. L., & Schuth, F. (2007). Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angenwadte Chemistry of Sciences, 46, pp.1222-1244.

Mandal, K., Chakraverty, S., Mandal, S. P., Agudo, P., Pal, M., & Chakravorty, D. (2002). Size-Dependent Magnetic Properties of Mn0,5Zn0,5Fe2O4 Nanoparticles in SiO2 Matrix, Journal of Applied Physics, 92, pp. 501.

Martinez, J. R., Palomares-Sánchez, S. A., Ortega-Zarzosa, G., Ruiz, F., & Chumakov, Y. (2006). Rietveld Refinement of Amorphous SiO2 Prepared Via Sol–Gel Method. Materials Letters, 60(29-30), 3526-3529. https://doi.org/10.1016/j.matlet.2006.03.044

Matsumoto, M., Matsusaki, M., & Akashi, M. (2013). Preparation of biodegradable peptide nanospheres with hetero peg brush surfaces. Macromolecular Bioscience, 14(1), 142-150. https://doi.org/10.1002/mabi.201300201

Merdekani, S. (2013). Sintesis Partikel Nanokomposit Fe3O4/SiO2 dengan Metode Kopresipitasi, Prosiding Seminar Nasional Sains dan Teknologi Nuklir,pp. 472-477.

Modak, S., Karan, S., Roy, S.K., Mukherjee, S., Das, D., & Chakrabarti, P.K. (2008). Preparation and Characterizations of SiO2-Coated Nanoparticles of Mn0,4Zn0,6Fe2O4, Journal of Magnetism and Magnetic Materials, 321, pp. 169-174.

Nadeem, K., Zeb, F., Abid, M. A., Mumtaz, M., & Rehman, M. A. U. (2014). Effect of Amorphous Silica Matrix on Structural, Magnetic, and Dielectric Properties of Cobalt Ferrite/Silica Nanocomposites. Journal of Non-Crystalline Solids, 400, 45–50. https://doi.org/10.1016/j.jnoncrysol.2014.05.004

Ngarajan, R., & Hatton, T. (2008). Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. Washington DC: ADS.

Nuzully, S., Kato, T., Iwata, S., & Suharyadi, E. (2013). Pengaruh Konsentrasi Polyethylene Glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe3O4. Jurnal Fisika Indonesia, 17(51), 35-40. https://doi.org/10.22146/jfi.24432

Patel, M., Park, J. K., & Jeong, B. (2023). Rediscovery of poly(ethylene glycol)s as a cryoprotectant for mesenchymal stem cells. Biomaterials Research, 27(1). https://doi.org/10.1186/s40824-023-00356-z

Sun, Y., Yan, C., Xie, J., Yan, D., Hu, K., Huang, S., & Xiong, F. (2019). High-performance worm-like mn–zn ferrite theranostic nanoagents and the application on tumor theranostics. ACS Applied Materials &Amp; Interfaces, 11(33), 29536-29548. https://doi.org/10.1021/acsami.9b08948

Ui, S. W., Lim, S. J., Lee, S. H., & Choi, S. C. (2009). Control of The Size and Morphology of Nano-Size Silica Particles Using a Sodium Silicate Solution, Journal of Ceramic Processing Research, 10, 4, pp. 553-558.

Wei, M., Guo, X., Qin, M., Pan, H., Cao, Y., & Wang, W. (2012). Mechanistic insights into the stabilization of srcsh3 by pegylation. Langmuir, 28(46), 16133-16140. https://doi.org/10.1021/la303466w

Widakdo, J., Istikhomah, N., Rifianto, A., Suharyadi, E., Kato, T., & Iwata, S. (2018). Crystal structures and magnetic properties of polyethylene glycol (peg-4000) encapsulated zn0.5ni0.5fe2o4 magnetic nanoparticles. Journal of Physics: Conference Series, 1011, 012068. https://doi.org/10.1088/1742-6596/1011/1/012068

Yacob, N. (2021). Effect of different molecular weight and concentration of polyethylene glycol (peg) on tensile and morphology of sago starch film. ASM Science Journal, 16, 1-10. https://doi.org/10.32802/asmscj.2021.571

Yan, S., Ling, W., & Zhou, E. (2004). Rapid synthesis of Mn0.65Zn0.35Fe2O4/SiO2 homogeneous nanocomposites by modified sol–gel auto-combustion method, Journal of Crystal Growth, 273, pp. 226-233.

Zhang, D. E., Zhang, X.J., Zheng, H. G., & Yang. D. D. (2005). Synthesis and Characterization of NiFe2O4 Magnetic Nanorods via a PEG-Assisted Route, Journal of Magnetism and Magnetic Materials, 292, pp.79-82.

Zhang, H., Liu, M., Fan, H., & Zhang, X. (2012). Carbonated nano hydroxyapatite crystal growth modulated by poly(ethylene glycol) with different molecular weights. Crystal Growth &Amp; Design, 12(5), 2204-2212. https://doi.org/10.1021/cg200917y

Zhao, L., Yang, H., Cui, Y., Zhao, X., & Feng, S. (2007). Study of Preparation and Magnetic Properties of Silica-Coated Cobalt Ferrite Nanocomposites, springer, 42, pp. 4110-4114.

Downloads

Published

2024-12-03

How to Cite

Laisina, E., & Suharyadi, E. (2024). Characterization of Crystal Structures and Magnetic Properties of Polyethylene Glycol (PEG-4000) and Silica Encapsulated Mn0.5Zn0.5Fe2O4 Nanoparticles. Empiricism Journal, 5(2), 214–223. https://doi.org/10.36312/ej.v5i2.2273

Issue

Section

Articles