Identifikasi Lapisan Bawah Permukaan Tanah dengan Metode Geolistrik Wenner Schlumberger
DOI:
https://doi.org/10.36312/ej.v5i2.2396Keywords:
Geoelectricity, Wenner-Schlumberger, AquiferAbstract
Penelitian ini bertujuan untuk mengidentifikasi struktur bawah permukaan di Dusun Sade dan Desa Rembitan, Lombok Tengah, menggunakan metode geolistrik konfigurasi Wenner-Schlumberger. Metode ini dipilih karena kemampuannya memberikan data resistivitas semu yang rinci, memungkinkan interpretasi litologi dan identifikasi zona akuifer. Hasil pengolahan data menunjukkan tujuh lapisan bawah permukaan di Dusun Sade, dengan zona akuifer dangkal pada kedalaman 13,65–23,68 m dan akuifer dalam pada kedalaman >114 m, masing-masing memiliki resistivitas rendah (2,19–2,94 ?m). Desa Rembitan menunjukkan delapan lapisan, dengan akuifer potensial pada kedalaman 7,52–26,05 m dan 16,68–51,76 m, dengan resistivitas 0,97–3,95 ?m. Lapisan breksi pasiran dengan resistivitas tinggi (>80 ?m di Dusun Sade dan 5,27 ?m di Desa Rembitan) berfungsi sebagai lapisan pelindung alami. Zona dengan resistivitas rendah menunjukkan potensi besar untuk penyediaan air bersih, sementara lapisan pelindung dapat melindungi akuifer dari kontaminasi. Penemuan ini relevan untuk mendukung perencanaan pengelolaan sumber daya air, mitigasi risiko bencana, dan tata ruang yang berkelanjutan. Dengan memanfaatkan hasil ini, otoritas lokal dapat mengoptimalkan lokasi pengeboran sumur, memitigasi risiko longsor di zona jenuh air, dan melindungi area penting dari pembangunan yang merusak. Penelitian ini menegaskan pentingnya pendekatan berbasis data geolistrik untuk mendukung pembangunan berkelanjutan dan ketahanan lingkungan di wilayah Lombok Tengah.
Identification of Subsurface Soil Layers Using the Wenner Schlumberger Geoelectric Method
Abstract
This study aims to identify subsurface structures in Sade Hamlet and Rembitan Village, Central Lombok, using the Wenner-Schlumberger geoelectric method. The method was chosen for its ability to provide detailed apparent resistivity data, enabling lithological interpretation and aquifer identification. Data processing revealed seven subsurface layers in Sade Hamlet, with shallow aquifers at 13.65–23.68 m and deep aquifers at >114 m, both with low resistivity (2.19–2.94 ?m). In Rembitan Village, eight layers were identified, with potential aquifers at 7.52–26.05 m and 16.68–51.76 m, exhibiting resistivity values of 0.97–3.95 ?m. High-resistivity sandy breccia layers (>80 ?m in Sade and 5.27 ?m in Rembitan) act as natural protective barriers. Zones with low resistivity indicate significant potential for clean water supply, while protective layers safeguard aquifers from contamination. These findings are relevant for planning water resource management, disaster risk mitigation, and sustainable spatial development. By utilizing these results, local authorities can optimize well locations, mitigate landslide risks in water-saturated zones, and protect critical areas from damaging activities. This study underscores the importance of geoelectric data-driven approaches in supporting sustainable development and environmental resilience in Central Lombok.
Downloads
References
Akingboye, A. S., Osazuwa, I. B., & Mohammed, M. Z. (2019). Electrical resistivity tomography for sustainable groundwater development in a complex geological area. Materials and Geoenvironment, 66(2), 121-128. https://doi.org/10.2478/rmzmag-2019-0004
Alao, J. O., Abduwahab, O. O., Lawal, H. A., Mary, E. T., Yusuf, M. A., Fahad, A., … & Abdulsalami, M. (2023). Delineation of aquifer storage capacity in response to regional groundwater development.. https://doi.org/10.21203/rs.3.rs-3336923/v1
Araffa, S. A. S., Mohamadin, M. I., Sabet, H. S., & Takey, M. S. (2019). Geophysical interpretation for groundwater exploration around hurghada area, egypt. NRIAG Journal of Astronomy and Geophysics, 8(1), 171-179. https://doi.org/10.1080/20909977.2019.1647389
Araffa, S. A. S., Mohamadin, M. I., Sabet, H. S., & Takey, M. S. (2019). Geophysical interpretation for groundwater exploration around hurghada area, egypt. NRIAG Journal of Astronomy and Geophysics, 8(1), 171-179. https://doi.org/10.1080/20909977.2019.1647389
Ayd?n, B., Tezer, A., Türkay, Z., Karaçor, E. K., Güler, ?., Uzun, O., … & Kara, D. (2018). Resilience through participatory planning for the integrated ecological risks in düzce. Resilience, 2(2), 105-121. https://doi.org/10.32569/resilience.484946
Azhar, H. G. (2004). Penerapan Metode Geolistrik Konfigurasi Schlumberger Untuk Penentuan Tahanan Jenis Batubara. Geofisika Terapan, ITB
Bahri. (2005). Handout Mata Kuliah Geofisika Lingkungan Dengan Topik Metode Geolistrik Resistivitas. Fakultas MIPA ITS Surabaya.
Batte, A., Barifaijo, E., Kiberu, J. M., Kawule, W., Muwanga, A., Owor, M., … & Kisekulo, J. (2010). Correlation of geoelectric data with aquifer parameters to delineate the groundwater potential of hard rock terrain in central uganda. Pure and Applied Geophysics, 167(12), 1549-1559. https://doi.org/10.1007/s00024-010-0109-x
Darisma, D., Fernanda, F., & Syukri, M. (2020). Investigation of groundwater potential using electrical resistivity method and hydraulic parameters in lam apeng, aceh besar, indonesia.. Journal of Geoscience, Engineering, Environment, and Technology, 5(4), 211-218. https://doi.org/10.25299/jgeet.2020.5.4.5501
Darul, A., Kurniawan, R., Irawan, D. E., & Wibowo, D. M. (2022). Analysis of exploration wells on aquifer in kaliwungu formation and regional planning recommendations. IOP Conference Series: Earth and Environmental Science, 1047(1), 012020. https://doi.org/10.1088/1755-1315/1047/1/012020
El-Haddad, B. A., Youssef, A. M., Mahran, T. M., & El-Sharter, A. H. (2024). Integrating remote sensing and field investigation for lithological mapping of per-eonile to neonile sequences west of sohag city, egypt: impact on urban development. Journal of Geography and Cartography, 7(1), 6028. https://doi.org/10.24294/jgc.v7i1.6028
Febriana, R., Minarto, E. dan Tryono, F. (2017), "Identifikasi Sebaran Aliran Air Bawah Tanah (Groundwater) dengan Metode Vertical Electrical Sounding (VES) Konfigurasi Schlumberger di Wilayah Cepu, Blora Jawa Tengah", Jurnal Sains dan Seni ITS, Vol.6. http://doi.org/10.12962/j23373520.v6i2.25280.
Flathe, H., & Leibold, W. (1976). The Smooth Sounding, a Manual for Field Work in Direct Current Resistivity Sounding. Federal Institute for Geosciences and Natural Resources, Hannover.
Han, T., Li, T., Ji, M., Yang, Y., & Liu, F. (2023). Risk assessment and zoning of earthquake disaster in shandong province based on gis. International Conference on Geographic Information and Remote Sensing Technology (GIRST 2022), 108. https://doi.org/10.1117/12.2667651
Hasan, M., Salimah, A., Susilo, A., Rahmat, A., Nurtanto, M., & Martina, N. (2022). Identification of landslide area using geoelectrical resistivity method as disaster mitigation strategy. International Journal on Advanced Science, Engineering and Information Technology, 12(4), 1484. https://doi.org/10.18517/ijaseit.12.4.14694
Hendrajaya, L., & Arif, I. (1990). Geolistrik Tahanan Jenis, Monografi: Metoda Eksplorasi, Bandung: Laboratorium Fisika Bumi, ITB.
Irawan Y. L. et al, (2022). Identifikasi Karakteristik Akuifer Dan Potensi Air Tanah Dengan Metode Geolistrik Konfigurasi Schlumberger di Desa Arjosari, Kecamatan Kalipare, Kabupaten Malang. Jurnal Pendidikan Geografi Vol 27 No 1.
Iserhien-Emekeme, R. E., Ofomola, M. O., Bawallah, M. A., & Anomohanran, O. (2017). Lithological identification and underground water conditions in jeddo using geophysical and geochemical methods. Hydrology, 4(3), 42. https://doi.org/10.3390/hydrology4030042
Khalil, M. I., Islam, S., Uddin, M. J., & Majumder, R. K. (2020). Coastal groundwater aquifer characterization from geoelectrical measurements- a case study at kalapara, patuakhali, bangladesh.. Journal of Applied Geology, 5(1), 1. https://doi.org/10.22146/jag.55009
Li, F., Torgoev, I., Zaredinov, D., Li, M., Talipov, B., Belousova, A. P., … & Schneider, P. (2021). Influence of earthquakes on landslide susceptibility in a seismic prone catchment in central asia. Applied Sciences, 11(9), 3768. https://doi.org/10.3390/app11093768
Mardiana U, (2006). Geologi Bawah Permukaan Formasi Cikapundung Berdasarkan Analisis Geolistrik. Bulletin of Scientific Contribution Vol 4 No 2
Meena, S. R. and Piralilou, S. T. (2019). Comparison of earthquake-triggered landslide inventories: a case study of the 2015 gorkha earthquake, nepal. Geosciences, 9(10), 437. https://doi.org/10.3390/geosciences9100437
Mohamad, F., et al. (2017). Potensi Akuifer Kampus Arjasari Berdasarkan Pengamatan Nilai Tahanan Jenis Batuan. Bulletin of Scientific Contribution Vol 15 No 2
Mohamaden, M. and Ehab, D. (2017). Application of electrical resistivity for groundwater exploration in wadi rahaba, shalateen, egypt. NRIAG Journal of Astronomy and Geophysics, 6(1), 201-209. https://doi.org/10.1016/j.nrjag.2017.01.001
Mo?cicki, W., Bania, G., ?wiklik, M., & Borecka, A. (2014). Dc resistivity studies of shallow geology in the vicinity of vistula river flood bank in czernichów village (near kraków in poland). Studia Geotechnica Et Mechanica, 36(1), 63-70. https://doi.org/10.2478/sgem-2014-0008
Musthofa, Z. and Indartono, S. (2020). Disaster mitigation curriculum-based on local wisdom to support sustainable development programs. Proceedings of the 2nd International Conference on Social Science and Character Educations (ICoSSCE 2019). https://doi.org/10.2991/assehr.k.200130.021
Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., & Cai, P. (2018). Landslide susceptibility assessment using spatial multi-criteria evaluation model in rwanda. International Journal of Environmental Research and Public Health, 15(2), 243. https://doi.org/10.3390/ijerph15020243
Nugraha, G. U., Csssa, B. Y., Nur, A. A., Pranantya, P. A., Handayani, L., Lubis, R. F., … & Bakti, H. (2021). Vertical electrical sounding exploration of groundwater in kertajati, majalengka, west java, indonesia. Indonesian Journal on Geoscience, 8(3), 359-369. https://doi.org/10.17014/ijog.8.3.359-369
Obiora, D. N., Ibuot, J. C., & George, N. J. (2015). Evaluation of aquifer potential, geoelectric and hydraulic parameters in ezza north, southeastern nigeria, using geoelectric sounding. International Journal of Environmental Science and Technology, 13(2), 435-444. https://doi.org/10.1007/s13762-015-0886-y
Oyeyemi, K. D., Aizebeokhai, A. P., Metwaly, M., Oladunjoye, M. A., Bayo-Solarin, B. A., Sanuade, O. A., … & Ekhaguere, O. A. (2021). Evaluating the groundwater potential of coastal aquifer using geoelectrical resistivity survey and porosity estimation: a case in ota, sw nigeria. Groundwater for Sustainable Development, 12, 100488. https://doi.org/10.1016/j.gsd.2020.100488
Purwanto, P., Hamidah, S., & Rini, W. D. E. (2022). Identification of aquifer potential by geoelectric method in gedangsari district, gunungkidul regency. International Journal of Sustainable Development and Planning, 17(8), 2551-2559. https://doi.org/10.18280/ijsdp.170823
Rincón-Jaimes, J. L., Ríos?Reyes, C. A., Chacón-Ávila, C. A., & Moreno-Torres, L. E. (2019). Processing of synthetic data for the treatment of geoelectric information for hydrogeological purposes of the málaga town, santander (colombia). Revista Boletín De Geología, 41(3), 145-161. https://doi.org/10.18273/revbol.v41n3-2019007
Soemarto, C. D.(1986). Hidrologi Teknik. Usaha Nasional, Surabaya.
Sosrodarsono, S., & Takeda K. (1976). Hidrologi Untuk Pengairan. PT. Pradnya Paramita, Jakarta.
Suhardjo, D. (2015). Arti penting pendidikan mitigasi bencana dalam mengurangi resiko bencana. Jurnal Cakrawala Pendidikan, (2). https://doi.org/10.21831/cp.v0i2.4226
Suharyadi, (1984). Geohidrologi (ilmu air tanah). Diktat kuliah Fakultas Teknik Universitas Gadjah Mada, Yogyakarta.
Susilo, A., Juwono, A. M., Aprilia, F., Hisyam, F., Rohmah, S., & Hasan, M. F. R. (2023). Subsurface analysis using microtremor and resistivity to determine soil vulnerability and discovery of new local fault. Civil Engineering Journal, 9(9), 2286-2299. https://doi.org/10.28991/cej-2023-09-09-014
Tauhid, C. D. L., Fathani, T. F., & Legono, D. (2017). Multi-disaster risk analysis of klaten regency, central java, indonesia. Journal of the Civil Engineering Forum, 3(3), 135. https://doi.org/10.22146/jcef.26743
Telford,W. M., Geldart, L. P., Sheriff, R. E., Key, D. D. (1976). Apllied Geophysics, edisi 1, Cambridge University Press, London
Wibawa, S. A. and Sasmi, A. T. (2024). Determination of groundwater potential using geoelectricity in tanah bumbu, south kalimantan. IOP Conference Series: Earth and Environmental Science, 1314(1), 012074. https://doi.org/10.1088/1755-1315/1314/1/012074
Winarto, J. B., Sukiyah, E., Haryanto, A. D., & Haryanto, I. (2019). Sub surface active fault identification on quaternary and tertiary rocks using geoelectric method in cilaki drainage basin, southern part of west java, indonesia. International Journal on Advanced Science, Engineering and Information Technology, 9(5), 1563-1569. https://doi.org/10.18517/ijaseit.9.5.8111
Windhari E., Lismaya E,. Atmaja D, (2022). Identifikasi Potensi Akuifer Dengan Metode Schlumberger di Dusun Mangkung Lauk, Desa Mangkung, Kecamatan Praya. Empirism Jurnal, DOI: https://doi.org/10.36312/ej.v3i2.1041
Windhari, E., & Rijal, K. (2021). Aplikasi Geolistrik Metode Schlumberger Untuk Penyelidikan Air Tanah di Dusun Surabaye, Desa Barabali, Lombok Tengah. Jurnal Sangkareang Mataram
Witvorapong, N., Muttarak, R., & Pothisiri, W. (2015). Social participation and disaster risk reduction behaviors in tsunami prone areas. Plos One, 10(7), e0130862. https://doi.org/10.1371/journal.pone.0130862
Wubalem, A. (2022). Landslide inventory, susceptibility, hazard and risk mapping. Landslides. https://doi.org/10.5772/intechopen.100504
Yusril M, Wien L, M. Haris, M. Fauzan D (2021), “Pemodelan Akuifer Air Tanah Dengan Metode Vertical Electrical Sounding (Ves) Studi Kasus Kabupaten Sorong, Provinsi Papua Barat”, Jurnal Geosaintek, Vol. 7 No. 3 Tahun 2021.
Zakaria, Z. (2016). Evaluasi Lingkungan Untuk Pondasi di Daerah Lapukan Breksi Vulkanik, Jatinangor, Jawa Barat. Bulletin of Scientific Contribution Vol 4 No 2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gusti Ayu Esty Windhari, I Gde Dharma Atmaja, Ni Putu Ety Lismaya Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.