Identifikasi dan Analisis Kerusakan Jalan Menggunakan Metode Pavement Condition Index (PCI) dan Surface Distress Index (SDI)

Authors

  • Widarto Sutrisno Universitas Sarjanawiyata Tamansiswa
  • Detha Sekar Langit Wahyu Gutama Universitas Sarjanawiyata Tamansiswa
  • July Khusnul Qotimah Universitas Sarjanawiyata Tamansiswa
  • Kurniawan Kurniawan Universitas Sarjanawiyata Tamansiswa

DOI:

https://doi.org/10.36312/ej.v5i2.2417

Keywords:

Kerusakan Jalan, Pavement Condition Index (PCI), Surface Distress Index (SDI)

Abstract

Jalan Milir – Dayakan memiliki nomor ruas 022 dengan Panjang ruas jalan di 3,6 km sesuai dalam Surat Keputusan Gubernur Daerah Istimewa Yogyakarta Nomor 124/KEP/2023 Tentang Penetapan Ruas Jalan Menurut Statusnya sebagai Jalan Provinsi dengan lebar ruas 6,7 meter dan tipe jalan 2/2 UD dengan kelas jalan III. Dikarenakan menjadi salah satu jalan alternatif, akibatnya ruas jalan Milir – Dayakan mengalami peningkatan volume kendaraan yang menjadikan salah satu faktor yang menyebabkan berbagai permasalahan kerusakan jalan yang terjadi pada ruas jalan tersebut, permasalahan yang dapat terjadi pada ruas jalan tersebut berupa kerusakan badan jalan dengan berbagai tipe kerusakan yang terjadi .Penelitian ini bertujuan untuk menganalisis tingkat kerusakan pada ruas Jalan Milir – Dayakan, Kabupaten Kulon Progo, menggunakan metode Pavement Condition Index (PCI) dan Surface Distress Index (SDI). Studi ini menggunakan data primer berupa survai secara langsung (visual) serta data sekunder dari instansi terkait. Metode PCI memberikan penilaian berdasarkan nilai kerusakan dari 0 hingga 100, sementara SDI mengevaluasi kerusakan jalan berdasarkan parameter seperti luas retak, jumlah lubang, dan kedalaman bekas roda. Hasil analisis menunjukkan bahwa nilai rata-rata PCI adalah 53,78, mengindikasikan kondisi jalan dalam kategori "sedang (fair)", dengan nilai tertinggi 100 (sempurna) dan terendah 9 (gagal). Sementara itu, nilai rata-rata SDI sebesar 37,78 menunjukkan kondisi jalan dalam kategori "baik". Berdasarkan hasil ini, disarankan perbaikan pada segmen-segmen dengan kerusakan parah untuk mencegah degradasi lebih lanjut dan meningkatkan kenyamanan pengguna jalan.

Identification and Analysis of Road Damage Using Pavement Condition Index (PCI) and Surface Distress Index (SDI) Methods

Abstract

The Milir–Dayakan Road is identified as road number 022, with a length of 3.6 km, as stated in the Governor's Decree of the Special Region of Yogyakarta No. 124/KEP/2023 concerning the Designation of Roads Based on Their Status as Provincial Roads. The Milir–Dayakan Road has a width of 6.7 meters and is classified as a 2/2 UD type road with road class III. The high volume of vehicles passing through this road contributes to various issues, including road pavement damage with diverse types of deterioration.This study aims to analyze the level of damage on the Milir–Dayakan Road, Kulon Progo Regency, using the Pavement Condition Index (PCI) and Surface Distress Index (SDI) methods. Primary data were collected through direct visual surveys to identify types and levels of road damage, supplemented by secondary data from relevant agencies. The PCI method assesses road conditions with scores ranging from 0 to 100, while the SDI method evaluates road damage based on parameters such as crack area, number of potholes, and rutting depth.The analysis results show an average PCI score of 53.78, indicating the road's condition falls into the "fair" category, with the highest PCI score being 100 ("excellent") and the lowest 9 ("failed"). Meanwhile, the average SDI score of 37.78 categorizes the road condition as "good." Based on these findings, repairs are recommended for segments with severe damage to prevent further deterioration and enhance user comfort.

Downloads

Download data is not yet available.

References

Abed, M. (2020). Development of regression models for predicting pavement condition index from the international roughness index. Journal of Engineering, 26(12), 81-94. https://doi.org/10.31026/j.eng.2020.12.05

Al Faritzie, H., Firda, A., & Aprilyanti, S. (2022). Identifikasi Dan Analisis Kerusakan Jalan Pada Ruas Jalan Siaran Sako Kota Palembang. Bearing?: Jurnal Penelitian Dan Kajian Teknik Sipil, 7(4), 223. https://doi.org/10.32502/jbearing.v7i4.5499

DIY, G. (2023). Keputusan Gubernur Daerah Istimewa Yogyakarta Nomor 41/KEP/2023 Tentang Penetapan Ruas Jalan Menurut Statusnya Sebagai Jalan Provinsi.

Faisal, R. (2020). Perbandingan Metode Bina Marga Dan Metode Pci (Pavement Condition Index) Dalam Mengevaluasi Kondisi Kerusakan Jalan (Studi Kasus Jalan Tengku Chik Ba Kurma, Aceh). Teras Jurnal?: Jurnal Teknik Sipil, 10(1), 110. https://doi.org/10.29103/tj.v10i1.256

Gupta, R. (2004). No Title ???????. CWL Publishing Enterprises, Inc., Madison, 2004(May), 352. http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract

Hung, P. (2019). Asphalt pavement performance in extreme weather events in tropical country. International Journal of Engineering Research And, V8(05). https://doi.org/10.17577/ijertv8is050057

Jha, S., Zhang, Y., Park, B., Cho, S., Krogmeier, J., Bagchi, T., … & Haddock, J. (2023). Data-driven web-based patching management tool using multi-sensor pavement structure measurements. Transportation Research Record Journal of the Transportation Research Board, 2677(12), 83-98. https://doi.org/10.1177/03611981231167161

Kim, K. and Le, T. (2023). Durability of polymer-modified asphalt mixture with wasted tire powder and epoxy resin under tropical climate curing conditions. Polymers, 15(11), 2504. https://doi.org/10.3390/polym15112504

Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V., … & Ding, L. (2020). Automated pavement crack detection and segmentation based on two?step convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 35(11), 1291-1305. https://doi.org/10.1111/mice.12622

Mansour, E., Mousa, M., Dhasmana, H., & Hassan, M. (2023). Machine-learning-based framework for prediction of the long-term field performance of asphalt concrete overlays in a hot and humid climate. Transportation Research Record Journal of the Transportation Research Board, 2677(10), 375-385. https://doi.org/10.1177/03611981231161353

Novianti, P., Setyawan, A., & Pramesti, F. (2024). Evaluation of road functional performance using pavement condition index (pci) and international roughness index (iri) methods using hawkeye (case study: demak ring road, central java province). Iop Conference Series Earth and Environmental Science, 1381(1), 012035. https://doi.org/10.1088/1755-1315/1381/1/012035

Ntramah, S., Tutu, K., Tuffour, Y., Adams, C., & Adanu, E. (2023). Evaluation of selected empirical models for asphalt pavement temperature prediction in a tropical climate: the case of ghana. Sustainability, 15(22), 15846. https://doi.org/10.3390/su152215846

Qiao, Y., Santos, J., Stoner, A., & Flinstch, G. (2019). Climate change impacts on asphalt road pavement construction and maintenance: an economic life cycle assessment of adaptation measures in the state of virginia, united states. Journal of Industrial Ecology, 24(2), 342-355. https://doi.org/10.1111/jiec.12936

Qureshi, W., Hassan, S., McKeever, S., Power, D., Mulry, B., Feighan, K., … & O’Sullivan, D. (2022). An exploration of recent intelligent image analysis techniques for visual pavement surface condition assessment. Sensors, 22(22), 9019. https://doi.org/10.3390/s22229019

Rabiupa, W. A., Rijal, K., & Dewi, N. P. E. L. (2023). Analisis Kerusakan Jalan Menggunakan Metode Bina Marga dan PCI pada Jalan Tgh. Lopan-Bundaran Gerung. Empiricism Journal, 4(1), 192–202. https://doi.org/10.36312/ej.v4i1.1213

Setiaputri, H., Isradi, M., Rifai, A., Mufhidin, A., & Prasetijo, J. (2021). Analysis of urban road damage with pavement condition index (pci) and surface distress index (sdi) methods. Adri International Journal of Sciences Engineering and Technology, 6(01), 10-19. https://doi.org/10.29138/ijset.v6i01.61

Yuliandra, E., Abrar, A., & Abdillah, N. (2022). Analisis Kerusakan Jalan Menggunakan Metode Bina Marga dan Metode Pavement Condition Index ( PCI ) ( Studi Kasus?: Jalan Sudirman dan Jalan Soekarno- Hatta Kota Dumai ). Slump Test Jurnal Teknik Sipil, 1(1), 29–35.

Yunardhi, H. (2018). Analisa Kerusakan Jalan Dengan Metode Pci Dan Alternatif Penyelesaiannya (Studi Kasus?: Ruas Jalan D.I. Panjaitan). Jurnal Teknologi Sipil, 2(2), 38–47.

Downloads

Published

2024-12-30

Issue

Section

Articles

How to Cite

Sutrisno, W., Gutama, D. S. L. W., Qotimah, J. K., & Kurniawan, K. (2024). Identifikasi dan Analisis Kerusakan Jalan Menggunakan Metode Pavement Condition Index (PCI) dan Surface Distress Index (SDI). Empiricism Journal, 5(2), 634-646. https://doi.org/10.36312/ej.v5i2.2417