Pengawasan Sistem Pigging Cerdas pada Pemeriksaan Pipa Saluran Bahan Bakar dari Tangki Penampung ke Terminal Pengisian
DOI:
https://doi.org/10.36312/ej.v6i2.2945Keywords:
Sistem Pigging Cerdas, Pemeriksaan Saluran, Kebocoran Fluks MagnetikAbstract
Sistem intelligent pigging telah muncul sebagai teknologi penting untuk inspeksi in-line (ILI) pada jaringan pipa. Makalah ini memfokuskan ILI pada jaringan pipa bahan bakar hilir dari tangki penyimpanan ke stasiun pengisian. Makalah ini menawarkan metode non-intrusif untuk menilai integritas struktural, mendeteksi anomali, dan memastikan keselamatan operasional. Studi ini menyelidiki mekanisme sistem pemeriksaan pigging cerdas, dengan fokus pada akuisisi data dengan waktu yang tepat, pelayanan akurat, dan pengawasan adaptif dalam jaringan pipa yang kompleks. Sistem ini menggabungkan beberapa pengandaian penginderaan melalui kebocoran fluks magnetik (MFL) untuk memungkinkan memeriksa dalam pipa secara menyeluruh. Penekanan ditempatkan pada perancangan pengawasan algoritma yang mengelola kecepatan pig, menghubungkan sensor, dan perundingan rintangan dalam berbagai kondisi pipa bahan bakar. MFL berkaitan dengan pemrosesan sinyal, efisiensi daya dan komunikasi data di lingkungan yang terbatas. Hasil MFL menunjukkan metoda pengawasan efektif yang diusulkan dalam meningkatkan penemuan akurat dan keandalan operasional. Hasilnya menunjukan peningkatan manajemen integritas pipa dan mendukung praktik pemeliharaan prediktif di sektor transportasi bahan bakar.
Intelligent Pigging System Supervision in Inspection of Fuel Line Pipeline from Storage Tank to Filling Terminal
Abstract
Intelligent pigging systems have emerged as an important technology for in-line inspection (ILI) of pipelines. This paper focuses on ILI in downstream fuel pipelines from storage tanks to filling stations. It proposes a non-intrusive method to assess structural integrity, detect anomalies, and ensure operational safety. This study investigates the mechanism of an intelligent pigging inspection system, focusing on timely data acquisition, accurate service, and adaptive monitoring in complex pipelines. The system combines multiple sensing modalities via magnetic flux leakage (MFL) to enable comprehensive in-pipe inspection. Emphasis is placed on designing a monitoring algorithm that manages pig speed, sensor coupling, and obstacle negotiation under various fuel pipeline conditions. MFL deals with signal processing, power efficiency, and data communication in a confined environment. The MFL results demonstrate the effectiveness of the proposed monitoring method in improving accurate detection and operational reliability. The results demonstrate the improvement of pipeline integrity management and support predictive maintenance practices in the fuel transportation sector.
Downloads
References
Aditiyawarman, T., Soedarsono, J., Kaban, A., Riastuti, R., Rahmadani, H., Pribadi, M., … & Suryadi, S. (2022). Risk analysis of ex-spool 16” mol: an insight of machine learning and experimental result. Eastern-European Journal of Enterprise Technologies, 3(12 (117)), 20-33. https://doi.org/10.15587/1729-4061.2022.259858
Al-Zubi, M. M., & Alouini, M.-S. (2025). Macroscale molecular communication in IoT-based pipeline inspection and monitoring applications. arXiv. https://arxiv.org/abs/2504.09325
ASME. (2016). ASME Code for Pressure Piping, B31.4. The American Society of Mechanical Engineers.
ASME. (2022). ASME Code for Pressure Piping, B31.8. The American Society of Mechanical Engineers.
ASME. (2023). ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. The American Society of Mechanical Engineers.
ASME. (2024). ASME Code for Pressure Piping, B31.3. The American Society of Mechanical Engineers.
Baroudi, U., Al-Roubaiey, A., & Devendiran, A. (2019). Pipeline leak detection systems and data fusion: A survey. arXiv preprint arXiv:1902.03927. https://arxiv.org/abs/1902.03927
Bo, F., Wu, J., Tu, H., Tang, J., & Kang, Y. (n.d.). A review of magnetic flux leakage nondestructive testing. Materials. https://www.mdpi.com/journal/materials
Cheng, Y., & Xie, R. (2020). Analysis of vibration characteristics of the pig launcher based on fluid-solid coupling. Journal of Multidisciplinary Engineering Science Studies. https://jmess.org
Feng, Y., Li, C., & Zhao, H. (n.d.). Advanced magnetic flux leakage techniques for pipeline inspection. Journal of Pipeline Integrity Research, 15(2), 95–110.
Giro, R. A., Bernasconi, G., Giunta, G., & Cesari, S. (2021). Predicting pigging operations in oil pipelines. arXiv. https://arxiv.org/abs/2109.11812
He, T., Liao, K., Leng, J., He, G., Zhu, H., & Zhao, S. (2023). A novel non-contact, magnetic-based stress inspection technology and its application to stress concentration zone diagnosis in pipelines. Measurement Science and Technology, 34(9), 095001. https://doi.org/10.1088/1361-6501/acca02
Hou, P., Yi, X., & Dong, H. (2020). A spatial statistic based risk assessment approach to prioritize the pipeline inspection of the pipeline network. Energies, 13(3), 685. https://doi.org/10.3390/en13030685
Hu, T., & Guo, J. (2019). Development and application of new technologies and equipment for in-line pipeline inspection. ScienceDirect. https://www.sciencedirect.com
Hua, Y., Barker, R., & Neville, A. (2015). The influence of so2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical co2. International Journal of Greenhouse Gas Control, 37, 412-423. https://doi.org/10.1016/j.ijggc.2015.03.031
Jari?, M., Petroni?, S., Brat, Z., Poli?, S., & Maksimovi?, I. V. (2025). Pipeline inspection gauge trap integrity estimation for upcoming pigging activities on midstream pipeline. Processes, 13(4), 1255. https://doi.org/10.3390/pr13041255
Kou, J., Ma, D., Yang, L., & Wang, D. (2022). Effect of co2 content on corrosion non-uniformity of 20# steel in oil–water two-phase based on wire beam electrode technique. Corrosion Engineering Science and Technology the International Journal of Corrosion Processes and Corrosion Control, 58(1), 23-35. https://doi.org/10.1080/1478422x.2022.2130509
Lahme, S., Mand, J., Longwell, J., Smith, R., & Enning, D. (2021). Severe corrosion of carbon steel in oil field produced water can be linked to methanogenic archaea containing a special type of [nife] hydrogenase. Applied and Environmental Microbiology, 87(3). https://doi.org/10.1128/aem.01819-20
Li, Q. and Liu, B. (2022). Erosion-corrosion of gathering pipeline steel in oil-water-sand multiphase flow. Metals, 13(1), 80. https://doi.org/10.3390/met13010080
Lim, K., Bao, C., Sani, M., & Lim, K. (2021). Numerical study on the effect of defect length upon burst capacity of composite repaired pipe. Key Engineering Materials, 879, 179-188. https://doi.org/10.4028/www.scientific.net/kem.879.179
LiN SCAN. (n.d.). Pipeline inspection and integrity solutions. https://linscaninspection.com
Ling, J., Peng, X., Siggers, K., Peussner, M., Rayhana, R., & Liu, Z. (2024). Reconstruction of 3-d pipeline corrosion defect profile from mfl signals with deep learning approach., 12. https://doi.org/10.1117/12.3010024
LinkeWire. (2024, October 18). Intelligent pipeline pigging market insights: Enhancing pipeline integrity 2024–2033. https://linkewire.com/2024/10/18/intelligent-pipeline-pigging-market-insights-enhancing-pipeline-integrity-2024-2033/
Liu, J., Yao, D., Chen, K., Wang, C., Sun, C., Pan, H., … & Wang, L. (2023). Effect of h2o content on the corrosion behavior of x52 steel in supercritical co2 streams containing o2, h2s, so2 and no2 impurities. Energies, 16(17), 6119. https://doi.org/10.3390/en16176119
Ma, H., Geng, M., Wang, F., Zheng, W., Ai, Y., & Zhang, W. (2024). Data augmentation of a corrosion dataset for defect growth prediction of pipelines using conditional tabular generative adversarial networks. Materials, 17(5), 1142. https://doi.org/10.3390/ma17051142
Mahlobo, M., Premlall, K., & Olubambi, P. (2021). Effect of exposure time with so2 as an impurity on the corrosion behaviour of pipeline steel in ccs transportation. Corrosion Engineering Science and Technology the International Journal of Corrosion Processes and Corrosion Control, 57(1), 44-54. https://doi.org/10.1080/1478422x.2021.1982113
Market Research Future. (2025, January 10). Intelligent pigging market report, 2025: Size & share, growing at a CAGR of 5.97%. https://www.einpresswire.com/article/775799464/intelligent-pigging-market-report-2025-size-share-growing-at-a-cagr-of-5-97
Riady, R., Soedarsono, J., Riastuti, R., & Adipurnama, I. (2022). Material selection for raw gas pipeline at sbr#2 gas field. Teknomekanik, 5(2), 63-71. https://doi.org/10.24036/teknomekanik.v5i2.13372
Shaik, N., Pedapati, S., & Dzubir, F. (2019). Remaining useful life prediction of crude oil pipeline by means of deterioration curves. Process Safety Progress, 39(S1). https://doi.org/10.1002/prs.12112
Shen, Y. and Zhou, W. (2024). Classification and regression of pinhole corrosions on pipelines based on magnetic flux leakage signals using convolutional neural networks. Algorithms, 17(8), 347. https://doi.org/10.3390/a17080347
Silva, C., Pereira, H., Taqueda, M., & Panossian, Z. (2021). Prediction models for multiphase?flow?induced corrosion of api x80 steel in co2/h2s environment. Materials and Corrosion, 72(11), 1796-1807. https://doi.org/10.1002/maco.202112451
Soedarsono, J., Wijaya, A., Aditiyawarman, T., Kaban, A., Riastuti, R., Ramdhani, R., … & Ayende, A. (2023). Development of risk-based inspection of 28-years-old subsea sales gas pipelines to support the energy demand. Eastern-European Journal of Enterprise Technologies, 2(3 (122)), 17-27. https://doi.org/10.15587/1729-4061.2023.277256
Tiehua, W., & Jingbo, L. (2019). Intelligent pigging: An efficient method for internal pipeline inspection. Journal of Petroleum Science and Engineering, 178, 752–760. https://doi.org/10.1016/j.petrol.2019.04.054
Tronskar, J. and Wui, L. (2022). Inspection and remaining life assessment of subsea pipelines exposed to various forms of internal corrosion degradation mechanisms., 240-250. https://doi.org/10.1115/1.885789_ch18
Usarek, Z. and Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37-45. https://doi.org/10.1515/adms-2017-0014
Wang, W., Sun, Y., Wang, B., Dong, M., & Chen, Y. (2022). Cfd-based erosion and corrosion modeling of a pipeline with co2-containing gas–water two-phase flow. Energies, 15(5), 1694. https://doi.org/10.3390/en15051694
Wari, E., Zhu, W., & Lim, G. (2023). A corrosion maintenance model using continuous state partially observable markov decision process for oil and gas pipelines. Algorithms, 16(7), 345. https://doi.org/10.3390/a16070345
Xie, M., & Tian, Z. (2018). A review on pipeline integrity management utilizing in-line inspection data. ResearchGate. https://www.researchgate.net/publication/328208231
Zhou, L. (2023). A study on the corrosion behaviour and mechanism of associated gas on surface pipes in fire-flooding oil recovery. Journal of Physics Conference Series, 2418(1), 012060. https://doi.org/10.1088/1742-6596/2418/1/012060
Zhu, C., Yang, Y., Yang, K., Zhang, H., Yang, Q., & Chen, C. L. P. (2023). AI-based energy transportation safety: Pipeline radial threat estimation using intelligent sensing system. arXiv preprint arXiv:2312.11583. https://arxiv.org/abs/2312.1158
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Agus Sudianto, Siti Mastoah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.