Pengawasan Sistem Pigging Cerdas pada Pemeriksaan Pipa Saluran Bahan Bakar dari Tangki Penampung ke Terminal Pengisian

Authors

  • Agus Sudianto Institut Teknologi PLN
  • Siti Mastoah Institut Teknologi PLN

DOI:

https://doi.org/10.36312/ej.v6i2.2945

Keywords:

Sistem Pigging Cerdas, Pemeriksaan Saluran, Kebocoran Fluks Magnetik

Abstract

Sistem intelligent pigging telah muncul sebagai teknologi penting untuk inspeksi in-line (ILI) pada jaringan pipa. Makalah ini memfokuskan ILI pada jaringan pipa bahan bakar hilir dari tangki penyimpanan ke stasiun pengisian. Makalah ini menawarkan metode non-intrusif untuk menilai integritas struktural, mendeteksi anomali, dan memastikan keselamatan operasional. Studi ini menyelidiki mekanisme sistem pemeriksaan pigging cerdas, dengan fokus pada akuisisi data dengan waktu yang tepat, pelayanan akurat, dan pengawasan adaptif dalam jaringan pipa yang kompleks. Sistem ini menggabungkan beberapa pengandaian penginderaan melalui kebocoran fluks magnetik (MFL) untuk memungkinkan memeriksa dalam pipa secara menyeluruh. Penekanan ditempatkan pada perancangan pengawasan algoritma yang mengelola kecepatan pig, menghubungkan sensor, dan perundingan rintangan dalam berbagai kondisi pipa bahan bakar. MFL berkaitan dengan pemrosesan sinyal, efisiensi daya dan komunikasi data di lingkungan yang terbatas. Hasil MFL menunjukkan metoda pengawasan efektif yang diusulkan dalam meningkatkan penemuan akurat dan keandalan operasional. Hasilnya menunjukan peningkatan manajemen integritas pipa dan mendukung praktik pemeliharaan prediktif di sektor transportasi bahan bakar.

Intelligent Pigging System Supervision in Inspection of Fuel Line Pipeline from Storage Tank to Filling Terminal

Abstract

Intelligent pigging systems have emerged as an important technology for in-line inspection (ILI) of pipelines. This paper focuses on ILI in downstream fuel pipelines from storage tanks to filling stations. It proposes a non-intrusive method to assess structural integrity, detect anomalies, and ensure operational safety. This study investigates the mechanism of an intelligent pigging inspection system, focusing on timely data acquisition, accurate service, and adaptive monitoring in complex pipelines. The system combines multiple sensing modalities via magnetic flux leakage (MFL) to enable comprehensive in-pipe inspection. Emphasis is placed on designing a monitoring algorithm that manages pig speed, sensor coupling, and obstacle negotiation under various fuel pipeline conditions. MFL deals with signal processing, power efficiency, and data communication in a confined environment. The MFL results demonstrate the effectiveness of the proposed monitoring method in improving accurate detection and operational reliability. The results demonstrate the improvement of pipeline integrity management and support predictive maintenance practices in the fuel transportation sector.

Downloads

Download data is not yet available.

References

Aditiyawarman, T., Soedarsono, J., Kaban, A., Riastuti, R., Rahmadani, H., Pribadi, M., … & Suryadi, S. (2022). Risk analysis of ex-spool 16” mol: an insight of machine learning and experimental result. Eastern-European Journal of Enterprise Technologies, 3(12 (117)), 20-33. https://doi.org/10.15587/1729-4061.2022.259858

Al-Zubi, M. M., & Alouini, M.-S. (2025). Macroscale molecular communication in IoT-based pipeline inspection and monitoring applications. arXiv. https://arxiv.org/abs/2504.09325

ASME. (2016). ASME Code for Pressure Piping, B31.4. The American Society of Mechanical Engineers.

ASME. (2022). ASME Code for Pressure Piping, B31.8. The American Society of Mechanical Engineers.

ASME. (2023). ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. The American Society of Mechanical Engineers.

ASME. (2024). ASME Code for Pressure Piping, B31.3. The American Society of Mechanical Engineers.

Baroudi, U., Al-Roubaiey, A., & Devendiran, A. (2019). Pipeline leak detection systems and data fusion: A survey. arXiv preprint arXiv:1902.03927. https://arxiv.org/abs/1902.03927

Bo, F., Wu, J., Tu, H., Tang, J., & Kang, Y. (n.d.). A review of magnetic flux leakage nondestructive testing. Materials. https://www.mdpi.com/journal/materials

Cheng, Y., & Xie, R. (2020). Analysis of vibration characteristics of the pig launcher based on fluid-solid coupling. Journal of Multidisciplinary Engineering Science Studies. https://jmess.org

Feng, Y., Li, C., & Zhao, H. (n.d.). Advanced magnetic flux leakage techniques for pipeline inspection. Journal of Pipeline Integrity Research, 15(2), 95–110.

Giro, R. A., Bernasconi, G., Giunta, G., & Cesari, S. (2021). Predicting pigging operations in oil pipelines. arXiv. https://arxiv.org/abs/2109.11812

He, T., Liao, K., Leng, J., He, G., Zhu, H., & Zhao, S. (2023). A novel non-contact, magnetic-based stress inspection technology and its application to stress concentration zone diagnosis in pipelines. Measurement Science and Technology, 34(9), 095001. https://doi.org/10.1088/1361-6501/acca02

Hou, P., Yi, X., & Dong, H. (2020). A spatial statistic based risk assessment approach to prioritize the pipeline inspection of the pipeline network. Energies, 13(3), 685. https://doi.org/10.3390/en13030685

Hu, T., & Guo, J. (2019). Development and application of new technologies and equipment for in-line pipeline inspection. ScienceDirect. https://www.sciencedirect.com

Hua, Y., Barker, R., & Neville, A. (2015). The influence of so2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical co2. International Journal of Greenhouse Gas Control, 37, 412-423. https://doi.org/10.1016/j.ijggc.2015.03.031

Jari?, M., Petroni?, S., Brat, Z., Poli?, S., & Maksimovi?, I. V. (2025). Pipeline inspection gauge trap integrity estimation for upcoming pigging activities on midstream pipeline. Processes, 13(4), 1255. https://doi.org/10.3390/pr13041255

Kou, J., Ma, D., Yang, L., & Wang, D. (2022). Effect of co2 content on corrosion non-uniformity of 20# steel in oil–water two-phase based on wire beam electrode technique. Corrosion Engineering Science and Technology the International Journal of Corrosion Processes and Corrosion Control, 58(1), 23-35. https://doi.org/10.1080/1478422x.2022.2130509

Lahme, S., Mand, J., Longwell, J., Smith, R., & Enning, D. (2021). Severe corrosion of carbon steel in oil field produced water can be linked to methanogenic archaea containing a special type of [nife] hydrogenase. Applied and Environmental Microbiology, 87(3). https://doi.org/10.1128/aem.01819-20

Li, Q. and Liu, B. (2022). Erosion-corrosion of gathering pipeline steel in oil-water-sand multiphase flow. Metals, 13(1), 80. https://doi.org/10.3390/met13010080

Lim, K., Bao, C., Sani, M., & Lim, K. (2021). Numerical study on the effect of defect length upon burst capacity of composite repaired pipe. Key Engineering Materials, 879, 179-188. https://doi.org/10.4028/www.scientific.net/kem.879.179

LiN SCAN. (n.d.). Pipeline inspection and integrity solutions. https://linscaninspection.com

Ling, J., Peng, X., Siggers, K., Peussner, M., Rayhana, R., & Liu, Z. (2024). Reconstruction of 3-d pipeline corrosion defect profile from mfl signals with deep learning approach., 12. https://doi.org/10.1117/12.3010024

LinkeWire. (2024, October 18). Intelligent pipeline pigging market insights: Enhancing pipeline integrity 2024–2033. https://linkewire.com/2024/10/18/intelligent-pipeline-pigging-market-insights-enhancing-pipeline-integrity-2024-2033/

Liu, J., Yao, D., Chen, K., Wang, C., Sun, C., Pan, H., … & Wang, L. (2023). Effect of h2o content on the corrosion behavior of x52 steel in supercritical co2 streams containing o2, h2s, so2 and no2 impurities. Energies, 16(17), 6119. https://doi.org/10.3390/en16176119

Ma, H., Geng, M., Wang, F., Zheng, W., Ai, Y., & Zhang, W. (2024). Data augmentation of a corrosion dataset for defect growth prediction of pipelines using conditional tabular generative adversarial networks. Materials, 17(5), 1142. https://doi.org/10.3390/ma17051142

Mahlobo, M., Premlall, K., & Olubambi, P. (2021). Effect of exposure time with so2 as an impurity on the corrosion behaviour of pipeline steel in ccs transportation. Corrosion Engineering Science and Technology the International Journal of Corrosion Processes and Corrosion Control, 57(1), 44-54. https://doi.org/10.1080/1478422x.2021.1982113

Market Research Future. (2025, January 10). Intelligent pigging market report, 2025: Size & share, growing at a CAGR of 5.97%. https://www.einpresswire.com/article/775799464/intelligent-pigging-market-report-2025-size-share-growing-at-a-cagr-of-5-97

Riady, R., Soedarsono, J., Riastuti, R., & Adipurnama, I. (2022). Material selection for raw gas pipeline at sbr#2 gas field. Teknomekanik, 5(2), 63-71. https://doi.org/10.24036/teknomekanik.v5i2.13372

Shaik, N., Pedapati, S., & Dzubir, F. (2019). Remaining useful life prediction of crude oil pipeline by means of deterioration curves. Process Safety Progress, 39(S1). https://doi.org/10.1002/prs.12112

Shen, Y. and Zhou, W. (2024). Classification and regression of pinhole corrosions on pipelines based on magnetic flux leakage signals using convolutional neural networks. Algorithms, 17(8), 347. https://doi.org/10.3390/a17080347

Silva, C., Pereira, H., Taqueda, M., & Panossian, Z. (2021). Prediction models for multiphase?flow?induced corrosion of api x80 steel in co2/h2s environment. Materials and Corrosion, 72(11), 1796-1807. https://doi.org/10.1002/maco.202112451

Soedarsono, J., Wijaya, A., Aditiyawarman, T., Kaban, A., Riastuti, R., Ramdhani, R., … & Ayende, A. (2023). Development of risk-based inspection of 28-years-old subsea sales gas pipelines to support the energy demand. Eastern-European Journal of Enterprise Technologies, 2(3 (122)), 17-27. https://doi.org/10.15587/1729-4061.2023.277256

Tiehua, W., & Jingbo, L. (2019). Intelligent pigging: An efficient method for internal pipeline inspection. Journal of Petroleum Science and Engineering, 178, 752–760. https://doi.org/10.1016/j.petrol.2019.04.054

Tronskar, J. and Wui, L. (2022). Inspection and remaining life assessment of subsea pipelines exposed to various forms of internal corrosion degradation mechanisms., 240-250. https://doi.org/10.1115/1.885789_ch18

Usarek, Z. and Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37-45. https://doi.org/10.1515/adms-2017-0014

Wang, W., Sun, Y., Wang, B., Dong, M., & Chen, Y. (2022). Cfd-based erosion and corrosion modeling of a pipeline with co2-containing gas–water two-phase flow. Energies, 15(5), 1694. https://doi.org/10.3390/en15051694

Wari, E., Zhu, W., & Lim, G. (2023). A corrosion maintenance model using continuous state partially observable markov decision process for oil and gas pipelines. Algorithms, 16(7), 345. https://doi.org/10.3390/a16070345

Xie, M., & Tian, Z. (2018). A review on pipeline integrity management utilizing in-line inspection data. ResearchGate. https://www.researchgate.net/publication/328208231

Zhou, L. (2023). A study on the corrosion behaviour and mechanism of associated gas on surface pipes in fire-flooding oil recovery. Journal of Physics Conference Series, 2418(1), 012060. https://doi.org/10.1088/1742-6596/2418/1/012060

Zhu, C., Yang, Y., Yang, K., Zhang, H., Yang, Q., & Chen, C. L. P. (2023). AI-based energy transportation safety: Pipeline radial threat estimation using intelligent sensing system. arXiv preprint arXiv:2312.11583. https://arxiv.org/abs/2312.1158

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Sudianto, A., & Mastoah, S. (2025). Pengawasan Sistem Pigging Cerdas pada Pemeriksaan Pipa Saluran Bahan Bakar dari Tangki Penampung ke Terminal Pengisian. Empiricism Journal, 6(2), 698-705. https://doi.org/10.36312/ej.v6i2.2945