Rancang Bangun Alat Monitoring Kelembaban dan Keasaman Tanah Berbasis Arduino Uno
DOI:
https://doi.org/10.36312/ej.v6i3.3446Keywords:
Arduino Uno, Kelembaban Tanah, pH Tanah, Monitoring PertanianAbstract
Kelembaban dan tingkat keasaman (pH) tanah merupakan faktor penting yang menentukan ketersediaan unsur hara, pertumbuhan tanaman, dan hasil panen. Namun, sebagian besar petani di Indonesia masih melakukan pemantauan kondisi tanah secara manual dan subjektif, sehingga berpotensi menyebabkan ketidaksesuaian perlakuan lahan dan penurunan produktivitas. Penelitian ini bertujuan untuk merancang dan membangun alat monitoring kelembaban dan keasaman tanah berbasis Arduino Uno sebagai solusi praktis dan efisien bagi petani. Metode penelitian menggunakan pendekatan eksperimental dengan perancangan prototipe yang memadukan sensor soil moisture dan sensor pH tanah yang diintegrasikan ke mikrokontroler Arduino Uno dan ditampilkan melalui LCD 16x2 I2C. Pengujian dilakukan pada tiga jenis tanah berbeda (lempung, berpasir, dan humus) dengan lima kali pengulangan pengukuran pada masing-masing sampel. Hasil penelitian menunjukkan rata-rata tingkat akurasi sensor kelembaban mencapai 96,2% dan sensor pH mencapai 94,7% dibandingkan dengan alat ukur standar laboratorium. Sistem ini mampu memberikan pembacaan data secara real-time dengan tingkat kestabilan tinggi (deviasi <5%). Temuan ini menunjukkan bahwa alat monitoring berbasis Arduino Uno efektif untuk membantu petani menentukan kondisi tanah ideal bagi pertumbuhan tanaman, serta berpotensi dikembangkan lebih lanjut menuju sistem pertanian berbasis Internet of Things (IoT) yang adaptif dan presisi.
Design and Development of an Arduino Uno–Based Soil Moisture and Acidity Monitoring Device
Abstract
Soil moisture and acidity (pH) are crucial factors that determine nutrient availability, plant growth, and crop yield. However, most farmers in Indonesia still monitor soil conditions manually and subjectively, which may lead to improper land management and reduced productivity. This study aims to design and develop an Arduino Uno–based soil moisture and acidity monitoring device as a practical and efficient solution for farmers. The research employs an experimental approach with a prototype design that integrates a soil moisture sensor and a soil pH sensor into an Arduino Uno microcontroller, with data displayed via a 16x2 I2C LCD. Testing was conducted on three different soil types (clay, sandy, and humus) with five measurement repetitions for each sample. The results show that the soil moisture sensor achieved an average accuracy of 96.2%, while the pH sensor reached 94.7% when compared to standard laboratory instruments. The system is capable of providing real-time data readings with high stability (deviation <5%). These findings indicate that the Arduino Uno–based monitoring device is effective in assisting farmers to determine the optimal soil conditions for plant growth and has the potential to be further developed into an adaptive and precise Internet of Things (IoT)–based agricultural system.
Downloads
References
AbioyeOgunbiyi, T., Adegoke, M., Abogunrin, A., Ogunsola, K., Arogundade, O., & Adesemowo, A. (2023). Contextual use of a smart farm irrigation system using internet of things (iot).. https://doi.org/10.22541/au.168853687.75342148/v1
Ai Dariah, S., Sutono, S., & Nurida, N. L. (2015). Pembenah tanah untuk meningkatkan produktivitas lahan pertanian. Jurnal Sumberdaya Lahan, 9(2), 67–84.
Ali, S., Ali, S., Khan, J., Khan, Z., Saleem, M., Munawwar, S., … & Khawer, H. (2024). A design and implementation of a sustainable microcontroller based solar power automatic water irrigation control and monitoring system. Pakistan Journal of Engineering Technology & Science, 12(1), 78-90. https://doi.org/10.22555/pjets.v12i1.1128
Arduino Indonesia. (n.d.). Kabel Jumper Female to Male. Diakses dari https://www.arduinoindonesia.id
ArduTech. (n.d.). USB Program Arduino. Diakses dari https://www.ardutech.com
Bato, V. and Alindogan, J. (2024). Method for calibrating an arduino-based soil moisture sensor using van genuchten’s equation. Philipp Agric Scientist, 107(1). https://doi.org/10.62550/ap007021
Bouhachlaf, L., Benslimane, O., & Hajjaji, S. (2023). Monitoring soil elements for irrigation management using internet of things (iot) sensors. World Water Policy, 9(4), 756-766. https://doi.org/10.1002/wwp2.12151
Ecadio. (n.d.). Sensor Kelembaban Tanah Soil Moisture. Diakses dari https://ecadio.com/sensor-kelembaban-tanah-soil-moisture
Evan, A., Sarosa, M., Diana, L., Andri, R., Kusumawardani, M., & Firmanda, D. (2024). Iot-based grapevine watering system design and soil condition monitoring. Bio Web of Conferences, 117, 01007. https://doi.org/10.1051/bioconf/202411701007
Gao, Z., Zhu, Y., Liu, C., Qian, H., Cao, W., & Ni, J. (2018). Design and test of a soil profile moisture sensor based on sensitive soil layers. Sensors, 18(5), 1648. https://doi.org/10.3390/s18051648
Indobot. (n.d.). IoT Pertanian Monitoring. Diakses dari https://blog.indobot.co.id/iot-pertanian-monitoring
Irawan, Y., Sabna, E., Azim, A., Wahyuni, R., Belarbi, N., & Josephine, M. (2022). Automatic chili plant watering based on internet of things (iot). Journal of Applied Engineering and Technological Science (Jaets), 3(2), 77-83. https://doi.org/10.37385/jaets.v3i2.532
Jain, R., Mukherjee, A., Karmakar, P., Banerjee, A., Akbarov, H., & Hasanov, S. (2023). Experimental performance of soil monitoring system using iot technique for automatic drip irrigation. International Journal of Communication Systems, 36(18). https://doi.org/10.1002/dac.5617
Martunis, L. (2017). Karakteristik kimia tanah dan status kesuburan tanah beberapa jenis tanah di lahan kering Kabupaten Aceh Besar, Provinsi Aceh (Indonesia). Jurnal Agrotan, 3(1), 77–90.
Mualfah, D., Sandi, G. H., & Fuad, E. (2023). Sistem monitoring pH dan kelembaban tanah pada tanaman kacang tanah berbasis IoT (Internet of Things).
Nurhartanto, N., Zulkarnain, Z., & Wicaksono, A. A. (2021). Analisis beberapa sifat fisik tanah sebagai indikator kerusakan tanah pada lahan kering. Journal of Tropical AgriFood, 4(2), 107–112. https://doi.org/10.35941/jatl.4.2.2022.7001.107-112
Pandey, Y., Khan, M., Choudhary, V., pandey, A., & Singh, S. (2023). Real-time soil monitoring with iot enabled system for crop prediction. Agricultural Science Digest - A Research Journal, (Of). https://doi.org/10.18805/ag.d-5705
Pechlivani, E., Papadimitriou, A., Pemas, S., Ntinas, G., & Tzovaras, D. (2023). Iot-based agro-toolbox for soil analysis and environmental monitoring. Micromachines, 14(9), 1698. https://doi.org/10.3390/mi14091698
Pranada Puspa, M. (2020). Rancang bangun alat ukur tingkat kelembaban tanah berbasis Arduino Uno.
Rakhman, A., Sutanto, A., & Hernowo, R. (2023). Pemanfaatan narrowband iot (nb-iot) dalam peningkatan produktivitas peternakan melalui monitoring otomatis. Jurnal Informatika Jurnal Pengembangan It, 8(3), 275-280. https://doi.org/10.30591/jpit.v8i3.5824
Riskhan, B., Hanass, N., Sheikh, M., & Hussain, K. (2024). Iot irrigation system using arduino.. https://doi.org/10.20944/preprints202405.1642.v1
Simamarta, A., Nisa, V., Maulana, R., Parawansa, N., Khairunnisa, I., & Budiawati, Y. (2025). Kajian literatur : penerapan internet of things (iot) untuk optimasi manajemen kesehatan tanah. Hidroponik, 2(2), 91-107. https://doi.org/10.62951/hidroponik.v2i2.402
Sinau Programming. (2020). LCD 16x2 I2C. Diakses dari https://www.sinauprogramming.com/2020/10
Triadiawarman, D., Amprin, A., & Sinta, K. (2022). Analisis indeks kualitas tanah pada lahan sawah di Desa Cipta Graha, Kecamatan Kaubun. Jurnal Pertanian Terpadu, 10(2). https://doi.org/10.36084/jpt.v10i2.453
Umbu, A. B. S. (2023). Kalibrasi sensor kelembaban tanah YL-69 untuk sistem pengukuran kelembaban tanah berbasis Arduino Uno. Optika: Jurnal Pendidikan Fisika, 7(1). https://doi.org/10.37478/optika.v7i1.2691
Yanti, I., & Kusuma, Y. R. (2022). Pengaruh kadar air dalam tanah terhadap kadar C-organik dan keasaman (pH) tanah. Indonesian Journal of Chemical Research, 6(2). https://doi.org/10.20885/ijcr.vol6.iss2.art5.
Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A., & Cao, C. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20). https://doi.org/10.1002/adma.202007764
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Alif Pratama, Kemas Muhammad Wahyu Hidayat, Jimmie Jimmie

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.