Teknologi Rehabilitasi Cerdas untuk Pemulihan Cedera Olahraga: Tinjauan dari Perspektif Fisioterapi
DOI:
https://doi.org/10.36312/ej.v6i4.3777Abstract
Cedera olahraga merupakan masalah umum pada atlet dan individu aktif yang dapat menurunkan performa, membatasi fungsi, dan memperpanjang proses pemulihan. Kemajuan teknologi telah mendorong fisioterapi olahraga menuju pendekatan rehabilitasi cerdas yang lebih objektif, terukur, dan efisien. Penelitian ini bertujuan meninjau penerapan teknologi rehabilitasi cerdas dalam pemulihan cedera olahraga, meliputi wearable devices, sensor biomekanik, virtual reality (VR), machine learning (ML), tele-rehabilitasi, dan elektromiografi (EMG). Metode yang digunakan adalah Systematic Literature Review (SLR) terhadap artikel nasional dan internasional yang dipublikasikan pada 2019–2025 melalui basis data PubMed, ScienceDirect, SpringerLink, BMC, BMJ OSEM, dan Google Scholar. Seleksi menggunakan kriteria inklusi–eksklusi menghasilkan 15 studi yang dianalisis, dengan penilaian kualitas sederhana berdasarkan desain penelitian, relevansi populasi, serta validitas aplikasi teknologi. Hasil menunjukkan bahwa wearable devices dan sensor biomekanik merupakan teknologi yang paling banyak diteliti, diikuti VR/AR, tele-rehabilitasi, dan AI/ML. Outcome dominan mencakup pemantauan parameter fisiologis dan biomekanik, peningkatan keseimbangan dan kekuatan ekstremitas bawah, estimasi beban latihan, deteksi pola gerak berisiko, serta pemantauan aktivasi otot melalui EMG. Secara umum, teknologi rehabilitasi cerdas terbukti meningkatkan efektivitas terapi, mempercepat pemulihan, dan meminimalkan risiko cedera berulang melalui pemantauan real time dan umpan balik berbasis data. Di Indonesia, penggunaan EMG dan aplikasi digital menunjukkan potensi adopsi teknologi dalam fisioterapi olahraga, meskipun implementasi klinis masih terbatas. Kesimpulannya, integrasi teknologi digital dengan praktik fisioterapi konvensional berpotensi memperkuat layanan rehabilitasi olahraga berbasis bukti, dengan tantangan pada kesiapan infrastruktur dan kompetensi teknologi tenaga fisioterapi.
Smart Rehabilitation Technology for Sports Injury Recovery: A Review from a Physiotherapy Perspective
Abstract
Sports injuries are a common problem among athletes and active individuals that can reduce performance, limit function, and prolong the recovery process. Technological advances have pushed sports physiotherapy towards a smarter rehabilitation approach that is more objective, measurable, and efficient. This study aims to review the application of smart rehabilitation technology in sports injury recovery, including wearable devices, biomechanical sensors, virtual reality (VR), machine learning (ML), tele-rehabilitation, and electromyography (EMG). The method used was a Systematic Literature Review (SLR) of national and international articles published in 2019–2025 through the PubMed, ScienceDirect, SpringerLink, BMC, BMJ OSEM, and Google Scholar databases. Selection using inclusion–exclusion criteria resulted in 15 studies being analyzed, with a simple quality assessment based on research design, population relevance, and technology application validity. The results showed that wearable devices and biomechanical sensors were the most researched technologies, followed by VR/AR, tele-rehabilitation, and AI/ML. The dominant outcomes included monitoring physiological and biomechanical parameters, improving balance and lower extremity strength, estimating exercise load, detecting risky movement patterns, and monitoring muscle activation through EMG. In general, smart rehabilitation technology has been shown to increase the effectiveness of therapy, accelerate recovery, and minimize the risk of recurrent injuries through real-time monitoring and data-based feedback. In Indonesia, the use of EMG and digital applications shows potential for technology adoption in sports physiotherapy, although clinical implementation remains limited. In conclusion, the integration of digital technology with conventional physiotherapy practices has the potential to strengthen evidence-based sports rehabilitation services, with challenges in infrastructure readiness and the technological competence of physiotherapy personnel.
Downloads
References
Almansour, A. M. (2024). The Effectiveness of Virtual Reality in Rehabilitation of Athletes: A Systematic Review and Meta-Analysis. Journal of Pioneering Medical Sciences, 13(4), 147–154. https://doi.org/10.61091/jpms202413423
Arzehgar, A., Seyedhasani, S. N., Ahmadi, F. B., Bagheri Baravati, F., Sadeghi Hesar, A., Kachooei, A. R., & Aalaei, S. (2025). Sensor-based technologies for motion analysis in sports injuries: A scoping review. BMC Sports Science, Medicine and Rehabilitation, 17(1), 15. https://doi.org/10.1186/s13102-025-01063-z
Asiegbu, A. (2025). Leveraging biomechanics and wearable technologies in sports for performance enhancement, injury prevention, and rehabilitation: A review. International Journal of Physiology, Sports and Physical Education, 7(1). https://www.doi.org/10.33545/26647710..v.i.117
Baroni, M. P., Jacob, M. F. A., Rios, W. R., Fandim, J. V., Fernandes, L. G., Chaves, P. I., Fioratti, I., & Saragiotto, B. T. (2023). The state of the art in telerehabilitation for musculoskeletal conditions. Archives of Physiotherapy, 13(1), 1. https://doi.org/10.1186/s40945-022-00155-0
Daniel, G., Anak Agung Gede Angga Puspa Negara, Indira Vidiari Juhanna, & Ni Wayan Tianing. (2022). The Relation Between Smartphone Use with Forward Head Posture Occurrence in Undergraduate Physiotherapy Student. Physical Therapy Journal of Indonesia, 3(2), 44–48. https://doi.org/10.51559/ptji.v3i2.51
Dharma, I. K. D. W., Andika, N. W. T., Dewi, N. L. A. C., Paramurthi, I. A. P., & Kurniawati, I. (2020). Online Game Duration Associated to Neck Functional Disability in Esports Athletes. Physical Therapy Journal of Indonesia, 1(2), 26–28. https://doi.org/10.51559/ptji.v1i2.7
Fazio, R. D., Mastronardi, V. M., De Vittorio, M., & Visconti, P. (2023). Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors, 23(4), 1856. https://doi.org/10.3390/s23041856
Jubair, H., Chowdhury, R. T., Akter, F., Sami, I. S., Nawal, N., Arshi, S. T., & Shil, P. (2025). Machine Learning for Real-Time Exercise Correction and Injury Prevention: A Systematic Review. Preprints. https://doi.org/10.22541/au.174466167.73334339/v1
Kovoor, M., Durairaj, M., Karyakarte, M. S., Zair Hussain, M., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors, 32, 101054. https://doi.org/10.1016/j.measen.2024.101054
Latif, A., Al Janabi, H. F., Joshi, M., Fusari, G., Shepherd, L., Darzi, A., & Leff, D. R. (2024). Use of commercially available wearable devices for physical rehabilitation in healthcare: A systematic review. BMJ Open, 14(11), e084086. https://doi.org/10.1136/bmjopen-2024-084086
Lesmana, S. I., Sugiyanto, Hidayatullah, M. F., Doewes, M., & Jusup, S. A. (2025). Battery of tests for return-to-sport assessment after knee injury in athletes. Physical Therapy Journal of Indonesia, 6(2), 155–159. https://doi.org/10.51559/ptji.v6i2.285
Manurung, S., Lestari, T. R., & Handayani, O. T. (2025). Using the Strava application for walking physical activities to control the risk of pre-eclampsia. Physical Therapy Journal of Indonesia, 6(2), 188–193. https://doi.org/10.51559/ptji.v6i2.305
Molina-Garcia, P., Mora-Traverso, M., Prieto-Moreno, R., Díaz-Vásquez, A., Antony, B., & Ariza-Vega, P. (2024). Effectiveness and cost-effectiveness of telerehabilitation for musculoskeletal disorders: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 67(1), 101791. https://doi.org/10.1016/j.rehab.2023.101791
Mu’jizatillah, & Putri, M. W. (2021). Telehealth Fisioterapi untuk Musculoskeletal Disorder Sebagai Dampak Work From Home Akibat Pandemi Covid-19. Jurnal Medika Karya Ilmiah Kesehatan, 6(1). https://doi.org/10.35728/jmkik.v6i1.691
Paladugu, P., Kumar, R., Ong, J., Waisberg, E., & Sporn, K. (2025). Virtual reality-enhanced rehabilitation for improving musculoskeletal function and recovery after trauma. Journal of Orthopaedic Surgery and Research, 20(1), 404. https://doi.org/10.1186/s13018-025-05705-3
Pekgor, M., Algin, A., Toros, T., & Serin, E. (2024). Wearable Sensors in Sports and Healthcare: Technological Advancements, Applications, and Future Perspectives. 20.
Rebelo, A., Martinho, D. V., Valente-dos-Santos, J., Coelho-e-Silva, M. J., & Teixeira, D. S. (2023). From data to action: A scoping review of wearable technologies and biomechanical assessments informing injury prevention strategies in sport. BMC Sports Science, Medicine and Rehabilitation, 15(1), 169. https://doi.org/10.1186/s13102-023-00783-4
Rusli, Sarifin, Ruslan, & Fahrizal. (2024). Elektromiogram Dalam Sports Science: Teknologi Baru Di Balik Rehabilitasi Cedera Olahraga. 2.
?ahin, O. (2024). Evaluation of Wearable Technologies in Physiotherapy and Rehabilitation. BAU Health and Innovation, 91–100. https://doi.org/10.14744/bauh.2023.43531
Seçkin, A. Ç., Ate?, B., & Seçkin, M. (2023). Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. DOAJ, 13.
Souaifi, M., Dhahbi, W., Jebabli, N., Ceylan, H. ?., Boujabli, M., Muntean, R. I., & Dergaa, I. (2025). Artificial Intelligence in Sports Biomechanics: A Scoping Review on Wearable Technology, Motion Analysis, and Injury Prevention. Bioengineering, 12(8), 887. https://doi.org/10.3390/bioengineering12080887
Sumner, J., Lim, H. W., Chong, L. S., Bundele, A., Mukhopadhyay, A., & Kayambu, G. (2023). Artificial intelligence in physical rehabilitation: A systematic review. Artificial Intelligence in Medicine, 146, 102693. https://doi.org/10.1016/j.artmed.2023.102693
Taká?, P. (2025). Sports Injury Rehabilitation: A Narrative Review of Emerging Technologies and Biopsychosocial Approaches. Applied Sciences, 15(17), 9788. https://doi.org/10.3390/app15179788
Wang, S., Xu, J., Zhao, X., Feng, Y., Xu, W., Xue, H., Wu, M., & Xu, L. (2023). Small RNA-seq and hormones in the testes of dwarf hamsters (Cricetulus barabensis) reveal the potential pathways in photoperiod regulated reproduction. Heliyon, 9(5), e15687. https://doi.org/10.1016/j.heliyon.2023.e1568
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ainul Hidayah, Muhammad Rhesa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.