Potensi Squalen dalam Anti-aging: Tinjauan Literatur Review
DOI:
https://doi.org/10.36312/skqxqk05Keywords:
Squalene, Anti-aging, Kolagen, Antioksidan, Regenerasi KulitAbstract
Penuaan kulit semakin mendapat perhatian, namun pemahaman tentang peran senyawa alami sebagai agen anti-aging masih perlu diperdalam. Squalene, senyawa triterpen hidrokarbon alami (C30H50) yang ditemukan dalam minyak hati ikan hiu, minyak zaitun, amaranth, dedak padi, serta mikroba rekayasa genetik, menarik perhatian sebagai bahan aktif anti-aging alami. Kajian ini bertujuan menganalisis kandungan aktif, mekanisme kerja, bentuk konsumsi, dan bukti ilmiah squalene dalam potensi anti-aging melalui pendekatan systematic literature review. Penelitian ini menganalisis 14 artikel dari bidang kosmetologi, dermatologi, dan bioteknologi farmasi (2016-2025), yang sebagian besar merupakan penelitian eksperimental (in vitro, ex vivo, dan in vivo) serta beberapa studi klinis awal. Hasil menunjukkan bahwa squalene bekerja melalui empat mekanisme utama: aktivitas antioksidan (menetralkan ROS, menekan MMP-1, mengaktifkan jalur Nrf2/ARE), antiinflamasi (menghambat NF-KB dan sitokin proinflamasi), fotoprotektif (mencegah peroksidasi lipid akibat UV), dan regeneratif (menstimulasi TGF-B untuk pembentukan kolagen). Formulasi nanoemulsi dan oleogel berbasis squalene efektif meningkatkan kondisi kulit. Squalene nabati, seperti dari minyak zaitun dan amaranth, menunjukkan efektivitas setara dengan sumber hewani, mendukung keberlanjutan dan etika produksi kosmetik. Squalene berpotensi sebagai bahan aktif anti-aging generasi baru yang aman, efektif, dan ramah lingkungan, namun kajian lebih lanjut diperlukan untuk menilai efektivitas jangka panjang dan dosis optimalnya.
The Potential of Squalene in Anti-aging: A Literature Review
Abstract
Skin aging is becoming an increasingly recognized issue, but understanding the role of natural compounds as anti-aging agents still requires further exploration. Squalene, a natural triterpene hydrocarbon (C30H50) found in shark liver oil, olive oil, amaranth, rice bran, and genetically engineered microbes, has gained attention as a natural anti-aging active ingredient. This review aims to analyze the active content, mechanisms of action, consumption forms, and scientific evidence supporting the anti-aging potential of squalene through a systematic literature review approach. The study analyzes 14 articles from the fields of cosmetology, dermatology, and pharmaceutical biotechnology (2016-2025), mostly experimental research (in vitro, ex vivo, and in vivo) supported by some early clinical studies. The results show that squalene works through four main mechanisms: antioxidant activity (neutralizing ROS, inhibiting MMP-1, activating Nrf2/ARE pathway), anti-inflammatory (inhibiting NF-KB and pro-inflammatory cytokines), photoprotective (preventing lipid peroxidation due to UV), and regenerative (stimulating TGF-B for collagen formation). Squalene-based nanoemulsion and oleogel formulations effectively improve skin conditions. Plant-based squalene, such as from olive oil and amaranth, shows comparable effectiveness to animal sources, supporting sustainability and ethical considerations in modern cosmetic production. Overall, squalene has great potential as a new generation of safe, effective, and environmentally friendly anti-aging active ingredients, though further studies are needed to assess long-term effectiveness and optimal dosages.
Downloads
References
Abdelkader, D., Abosalha, A., Khattab, M., Aldosari, B., & Almurshedi, A. (2021). A Novel Sustained Anti-Inflammatory Effect of Atorvastatin Calcium PLGA Nanoparticles: In Vitro Optimization and In Vivo Evaluation. Pharmaceutics, 13(10), 1658. https://doi.org/10.3390/pharmaceutics13101658
Aberegg, S. K., Cirulis, M. M., Maddock, S. D., Freeman, A., Keenan, L. M., Pirozzi, C. S., Raman, S. M., Schroeder, J., Mann, H., & Callahan, S. J. (2020). Clinical, Bronchoscopic, and Imaging Findings of e-Cigarette, or Vaping, Product Use–Associated Lung Injury Among Patients Treated at an Academic Medical Center. JAMA Network Open, 3(11), e2019176. https://doi.org/10.1001/jamanetworkopen.2020.19176
Bakhrushina, E. O., Shumkova, M. M., Avdonina, Y. V., Ananian, A. A., Babazadeh, M., Pouya, G., Grikh, V. V., Zubareva, I. M., Kosenkova, S. I., Krasnyuk, I. I., & Krasnyuk, I. I. (2025). Transdermal Drug Delivery Systems: Methods for Enhancing Skin Permeability and Their Evaluation. Pharmaceutics, 17(7), 936. https://doi.org/10.3390/pharmaceutics17070936
Berggren, E. (2022). Current trends in safety assessment of cosmetics ingredients. Regulatory Toxicology and Pharmacology, 134, 105228. https://doi.org/10.1016/j.yrtph.2022.105228
Hussen, N. H. amin, Abdulla, S. K., Ali, N. M., Ahmed, V. A., Hasan, A. H., & Qadir, E. E. (2025). Role of antioxidants in skin aging and the molecular mechanism of ROS: A comprehensive review. Aspects of Molecular Medicine, 5, 100063. https://doi.org/10.1016/j.amolm.2025.100063
Jiang, N., Quan, T., Li, R., Chen, Y., & Gao, T. (2025). Role of Nutritional Elements in Skin Homeostasis: A Review. Biomolecules, 15(6), 808. https://doi.org/10.3390/biom15060808
Kim, J., Yeo, H., Kim, T., Jeong, E., Lim, J. M., & Park, S. (2021). Relationship between lip skin biophysical and biochemical characteristics with corneocyte unevenness ratio as a new parameter to assess the severity of lip scaling. International Journal of Cosmetic Science, 43(3), 275–282. https://doi.org/10.1111/ics.12692
Kim, M., Jeon, K., Shin, S., Yoon, S., Kim, H., Kang, H. Y., Ryu, D., Park, D., & Jung, E. (2021). Melanogenesis promoting effect of Cirsium japonicum flower extract in vitro and ex vivo. International Journal of Cosmetic Science, 43(6), 703–714. https://doi.org/10.1111/ics.12746
Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A., & Passeron, T. (2017). The skin aging exposome. Journal of Dermatological Science, 85(3), 152–161. https://doi.org/10.1016/j.jdermsci.2016.09.015
Lee, J.-S., Min, J.-W., Gye, S.-B., Kim, Y.-W., Kang, H.-C., Choi, Y.-S., Seo, W.-S., & Lee, B.-Y. (2024). Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus iners Derived from Korean Women’s Skin in Their Twenties. Current Issues in Molecular Biology, 46(1), 513–526. https://doi.org/10.3390/cimb46010033
Liu, B., Zhang, T., Xie, Z., Hong, Z., Lu, Y., Long, Y., Ji, C., Liu, Y., Yang, Y., & Wu, H. (2022). Effective components and mechanism analysis of anti-platelet aggregation effect of Justicia procumbens L. Journal of Ethnopharmacology, 294, 115392. https://doi.org/10.1016/j.jep.2022.115392
Lozano-Grande, M. A., Gorinstein, S., Espitia-Rangel, E., Davila-Ortiz, G., & Martinez-Ayala, A. L. (2018). Plant Sources, Extraction Methods, and Uses of Squalene. International Journal of Agronomy, 2018, 1–13. https://doi.org/10.1155/2018/1829160
Manful, C. F., Fordjour, E., Ikumoinein, E., Abbey, Lord, & Thomas, R. (2025). Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review. BioChem, 5(4), 35. https://doi.org/10.3390/biochem5040035
Nastiti, C., Ponto, T., Abd, E., Grice, J., Benson, H., & Roberts, M. (2017). Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics, 9(4), 37. https://doi.org/10.3390/pharmaceutics9040037
Nowak-Perlak, M., Olszowy, M., & Wozniak, M. (2025). The Natural Defense: Anti-Aging Potential of Plant-Derived Substances and Technological Solutions Against Photoaging. International Journal of Molecular Sciences, 26(16), 8061. https://doi.org/10.3390/ijms26168061
Papadopoulou, S. N. A., Adamantidi, T., Kranas, D., Cholidis, P., Anastasiadou, C., & Tsoupras, A. (2025). A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics. Marine Drugs, 23(8), 299. https://doi.org/10.3390/md23080299
Paramasivan, K., A, A., Gupta, N., & Mutturi, S. (2021). Adaptive evolution of engineered yeast for squalene production improvement and its genome wide analysis. Yeast, 38(7), 424–437. https://doi.org/10.1002/yea.3559
Pauls, S. D., Ragheb, M., Winter, T., Leng, S., Taylor, C. G., Zahradka, P., & Aukema, H. M. (2020). Spleen Oxylipin and Polyunsaturated Fatty Acid Profiles are Altered by Dietary Source of Polyunsaturated Fatty Acid and by Sex. Lipids, 55(3), 261–270. https://doi.org/10.1002/lipd.12235
Perez-Rivero, C., & Lopez-Gomez, J. P. (2023). Unlocking the Potential of Fermentation in Cosmetics: A Review. Fermentation, 9(5), 463. https://doi.org/10.3390/fermentation9050463
Permadi, A., & Wilson, M. (2024). Review: Exploration of Squalene from Natural Materials as its Potential in Health and Food Fields. Indonesian Journal of Chemical Engineering, 2(2), 79–89. https://doi.org/10.26555/ijce.v2i2.1423
Seidita, A., Cusimano, A., Giuliano, A., Meli, M., Carroccio, A., Soresi, M., & Giannitrapani, L. (2024). Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants, 13(6), 731. https://doi.org/10.3390/antiox13060731
Shalu, S., Karthikanath, P. K. R., Vaidyanathan, V. K., Blank, L. M., Germer, A., & Balakumaran, P. A. (2024). Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry – A Review. Engineering in Life Sciences, 24(10). https://doi.org/10.1002/elsc.202400003
Taylor, E., Kim, Y., Zhang, K., Chau, L., Nguyen, B. C., Rayalam, S., & Wang, X. (2022). Antiaging Mechanism of Natural Compounds: Effects on Autophagy and Oxidative Stress. Molecules, 27(14), 4396. https://doi.org/10.3390/molecules27144396
Thomas, F., & Kayser, O. (2023). Improving CBCA synthase activity through rational protein design. Journal of Biotechnology, 363, 40–49. https://doi.org/10.1016/j.jbiotec.2023.01.004
Torres, A., Rego, L., Martins, M. S., Ferreira, M. S., Cruz, M. T., Sousa, E., & Almeida, I. F. (2023). How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals, 16(4), 573. https://doi.org/10.3390/ph16040573
Verron, E. (2024). Innovative Drug Delivery Systems for Regenerative Medicine. Pharmaceutics, 16(2), 295. https://doi.org/10.3390/pharmaceutics16020295
Waghmare, R. (2021). Refractance window drying: A cohort review on quality characteristics. Trends in Food Science & Technology, 110, 652–662. https://doi.org/10.1016/j.tifs.2021.02.030
Wolosik, K., Chalecka, M., Gasiewska, G., Palka, J., & Surazynski, A. (2025a). Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast. Molecules, 30(9), 1964. https://doi.org/10.3390/molecules30091964
Wolosik, K., Chalecka, M., Gasiewska, G., Palka, J., & Surazynski, A. (2025b). Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast. Molecules, 30(9), 1964. https://doi.org/10.3390/molecules30091964
Wolosik, K., Chalecka, M., Gasiewska, G., Palka, J., & Surazynski, A. (2025c). Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast. Molecules, 30(9), 1964. https://doi.org/10.3390/molecules30091964
Xia, D., Xiao, Y., Li, M., & Li, W. (2022). Refractory cutaneous lichen amyloidosis coexisting with atopic dermatitis responds to the Janus Kinase inhibitor baricitinib. Dermatologic Therapy, 35(9). https://doi.org/10.1111/dth.15724
Xu, L., Wang, W., Bai, K., Wu, Y., Ling, Y., Kong, X., Agusti, R., Qi, Q., Zheng, Z., Yuan, M., Chen, L., Liu, L., Weng, P., & Zhang, Y. (2023). Efficacy mechanisms research progress of the active components in the characteristic woody edible oils. Food Frontiers, 4(4), 1578–1605. https://doi.org/10.1002/fft2.314
Yan, L., Liu, Z., Zeng, Y., Ji, X., Wang, H., Ni, D., & Pan, M. (2025a). Nanowire-based squalene oleogel repairs skin photoaging. Journal of Nanobiotechnology, 23(1), 142. https://doi.org/10.1186/s12951-025-03233-0
Yan, L., Liu, Z., Zeng, Y., Ji, X., Wang, H., Ni, D., & Pan, M. (2025b). Nanowire-based squalene oleogel repairs skin photoaging. Journal of Nanobiotechnology, 23(1), 142. https://doi.org/10.1186/s12951-025-03233-0
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Putri Arumsari, Tatang Tajudin, Septiana Indratmoko, Elisa Issusilaningtyas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.