Interaksi Antara Pestisida dan Mikroorganisme Tanah: Degradasi Menggunakan Pendekatan Molekuler
DOI:
https://doi.org/10.36312/wrf5b524Keywords:
Pestisida, Mikroorganisme Tanah, Biodegradasi, Aktivitas Enzim Tanah, Degradasi MolekulerAbstract
Penelitian ini bertujuan mengkaji interaksi antara pestisida dan mikroorganisme tanah serta mekanisme biodegradasi yang terjadi melalui pendekatan molekuler. Metode yang digunakan adalah literature review dengan analisis kualitatif deskriptif terhadap 35 artikel utama yang dipilih melalui prosedur PRISMA dari berbagai basis data ilmiah. Hasil kajian menunjukkan bahwa pestisida dapat menurunkan keragaman mikroba tanah, menghambat aktivitas enzim, serta memicu pergeseran struktur komunitas mikroba, namun sejumlah bakteri dan fungi seperti Pseudomonas, Bacillus, Rhodococcus, Flavobacterium, Aspergillus, dan Penicillium yang mampu mendegradasinya melalui enzim kunci yang dikode oleh gen seperti opd, mpd, dan phnJ. Efektivitas degradasi ini sangat dipengaruhi oleh pH, suhu, bahan organik, dan tekstur tanah. Secara keseluruhan, kajian ini menegaskan bahwa pemahaman biodegradasi pestisida memerlukan integrasi antara analisis molekuler dan faktor ekologi, sehingga pengelolaan tanah berkelanjutan harus mempertimbangkan kedua aspek tersebut secara bersamaan.
Interaction Between Pesticides and Soil Microorganisms: Degradation Using a Molecular Approach
Abstract
This study aims to examine the interaction between pesticides and soil microorganisms and the biodegradation mechanisms that occur through a molecular approach. The method used is a literature review with descriptive qualitative analysis of 35 primary articles selected using the PRISMA procedure from various scientific databases. The results of the study indicate that pesticides can reduce soil microbial diversity, inhibit enzyme activity, and trigger shifts in microbial community structure. However, several bacteria and fungi such as Pseudomonas, Bacillus, Rhodococcus, Flavobacterium, Aspergillus, and Penicillium are capable of degrading them through key enzymes encoded by genes such as opd, mpd, and phnJ. The effectiveness of this degradation is strongly influenced by pH, temperature, organic matter, and soil texture. Overall, this study confirms that understanding pesticide biodegradation requires an integration of molecular analysis and ecological factors, so that sustainable soil management must consider both aspects simultaneously.
Downloads
References
Ab Aziz, N., & Kolega, A. (2024). Temperature-dependent degradation of glyphosate by soil bacteria. Journal of Soil Microbial Processes, 18(2), 55–64.
Akter, S. (2023). Changes in soil microbial communities after exposure to neonicotinoids: A systematic review. Environmental Microbiology Reports.
Aldas-Vargas, V. (2022). Microbial gene expression response to organic contaminants in soil ecosystems. Environmental Microbiology Reports, 14(3), 455–468.
Arora, P. K., & Sahni, N. (2016). Pesticides Effect on Soil Microbial Ecology and Enzyme Activity. Environmental Monitoring and Assessment, 188(8), 480. https://doi.org/10.1007/s10661-016-5485-4
Barbosa da Costa, N., Hébert, M.-P., Fugère, V., & Terrat, S. (2022). A glyphosate-based herbicide cross-selects for antibiotic resistance genes in bacterioplankton communities. MSystems.
Basapuram, G., Dutta, A., & Duttagupta, S. (2025). Biotransformation of Pesticides across Biological Systems: Molecular Mechanisms, Omics Insights, and Biotechnological Advances for Environmental Sustainability. ACS Omega. https://doi.org/10.1021/acsomega.5c06484
Bhatt, P., Huang, Y., Zhan, H., & Chen, S. (2021). Insight into microbial degradation of pyrethroid insecticides. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2020.1850393
Bhende, R. S., Jhariya, U., & Srivastava, S. (2022). Environmental distribution, metabolic fate, and degradation mechanism of chlorpyrifos: recent and future perspectives. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-04373-3
Bose, S., Kumar, P. S., Viet, D., & Rajamohan, N. V. N. (2021). Microbial degradation of recalcitrant pesticides: a review Bureau of Indian Standards. Environmental Chemistry Letters, 19(4), 3209–3228. https://doi.org/10.1007/s10311-021-01236-5
Bouma, J. (2024). Soil microstructure and microbial hotspots affecting pesticide degradation. Soil Biology and Biochemistry.
Briceno, G. (2024). Neonicotinoid effects on soil microorganisms: Responses of diversity, composition and function. Sustainability.
Camilo-Cotrim, C. F., Oliveira, E. A. S., & Caramori, S. S. (2025). Short-term field effects of a flumioxazin-based herbicide on soil enzyme activities, microbial biomass, respiration, and nitrogen dynamics. Environmental Monitoring and Assessment.
Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48–60. https://doi.org/10.1002/fes3.108
Chen, J., Wang, P., & Hu, X. (2019). Effects of pesticide exposure on Rhizobium–legume symbiosis and nitrogen fixation. Ecotoxicology and Environmental Safety, 183. https://doi.org/10.1016/j.ecoenv.2019.109505
Chia, X. K., Hadibarata, T., Kristanti, R. A., Jusoh, M. N. H., Tan, I. S., & Foo, H. C. Y. (2024). The function of microbial enzymes in breaking down soil contaminated with pesticides: A review. Bioremediation and Bioprocessing.
Correia, A. A. S., Silva, M., Pereira, J., & Rodrigues, L. (2025). A review of persistent soil contaminants: Assessment and environmental implications. MDPI
Ding, C., Zhao, X., & Li, Y. (2021). Impacts of pesticides on biological nitrogen fixation in agricultural soils. Science of the Total Environment, 788. https://doi.org/10.1016/j.scitotenv.2021.147705
Ewere, E. E. (2024). Soil microbial communities and degradation of pesticides under varying soil organic matter conditions. Environmental Science & Pollution Research.
Gopal, A. (2025). Microbial degradation of flubendiamide in different soil types: Role of organic matter composition. Scientific Reports.
Han, B. (2022). The source, fate and prospect of antibiotic resistance genes in soil. Review Article.
Jangir, A. K., & Jangid, R. (2025). The Sustainable Microbial Processes: An Emerging Trend for Green Chemical Approach BT - Towards Green Chemical Processes. Springer.
Khmelevtsova, L., Azhogina, T., & Sazykina, M. (2023). Heavy metals influence on the bacterial community of soils: a review. Agriculture (MDPI).
Kirubakaran, R., & Murugan, A. (2021). Molecular and enzymatic mechanism pathways of degradation of pesticides pollutants. In Soil Bioremediation: An Approach Towards Sustainable Technology. Wiley. https://doi.org/10.1002/9781119547976.ch11
Kundu, A., & Mandal, V. (2025). Effect of Xenobiotic Exposure to the AMF Community: A Concern on Their Diversity, Viability, and Host Physio-biochemical Impacts BT - Plant-Microbe Interaction under Xenobiotic Exposure. Springer.
Lamuka, A. P., & Aliwu, P. L. (2024). Analysis of microbial diversity in pesticide-contaminated soil. Environmental & Applied Microbiology.
Liao, H. (2021). Herbicide selection promotes antibiotic resistance in soil microbiomes. Molecular Biology and Evolution.
Liu, Y., Zhang, H., Wang, P., & Chen, L. (2025). Microbial degradation of pesticides: enzymatic pathways, genetic regulation, and environmental significance. Environmental Microbiology Reports, 17(2), 312–328. https://doi.org/10.1111/1758-2229.13245
Mat, P., Littera, P., & Farkas, B. (2023). Review on Performance of Aspergillus and Penicillium Species in Biodegradation of Organochlorine and Organophosphorus Pesticides.
Mitra, D., Rani, A., Janeeshma, E., & Khoshru, B. (2025). Microbial-mediated induced resistance: interactive effects for improving crop health. Frontiers in Microbiology.nwona-Kwakye, M. (2020). Pesticides decrease bacterial diversity and abundance of irrigated rice fields. Microorganisms.
Oyewusi, H. A., Huyop, F., & Wahab, R. A. (2021). Genomic characterization of a dehalogenase-producing bacterium (Bacillus megaterium H2) isolated from hypersaline Lake Tuz (Turkey). Gene Reports. https://doi.org/10.1016/j.genrep.2021.101279
Pan, Z., Wang, W., Xu, W., Yin, Y., Xu, X., & Zhu, L. (2025). Continental-scale characterization of pesticide cocktails in paddy soils: Associations with microbial community structure, function, and extracellular vesicle occurrence. Journal of Hazardous Materials.
Parizadeh, S. M. R., Karimi, B., & Burgess, P. (2023). Integrated omics approaches reveal pesticide-induced alteration in soil microbial networks. Soil Biology & Biochemistry, 178, 108–128.
Peprah, S. (2025). Effects of pesticide application on soil bacteria community structure in cabbage agroecosystem. PLOS ONE.
Qiu, D. (2022). Negative effects of abamectin on soil microbial communities: links to ARGs/MGEs. Frontiers in Microbiology.
Rahman, M. (2023). Effect of clay and silt proportion on pesticide persistence in agricultural soils. Environmental Monitoring and Assessment
Rehman, K., Mohd, H., Akhtar, S., & Interactions, M. (n.d.). Soil and Microbes (Vol. 2).
Rodríguez, A. (2020). Molecular tools for assessing microbial degradation of pesticides in soil environments. Journal of Hazardous Materials, 392, 122–156.
Shahid, M. (2021). Tolerance of pesticides and antibiotics among beneficial soil microbes. Soil Biology Reports.
Sondhia, S. (2025). Herbicide Residues: Environmental Fate and Impact on Food Safety BT - Recent Advances in Weed Science. Springer.
Sur, S., & Sathiavelu, M. (2022). A concise overview on pesticide detection and degradation strategies. Environmental Pollutants and Bioavailability, 34(1), 112–126. https://doi.org/10.1080/26395940.2022.2041489
Walder, F. (2022). Soil microbiome signatures are associated with pesticide residues in arable landscapes. Soil Biology & Biochemistry.
Wirsching, J., Müller, T., & Schneider, K. (2023). Influence of soil temperature on microbial pesticide mineralization dynamics. Environmental Microbiology Reports, 15(4), 721–733.
Yang, G. (2024). Changes in soil organic carbon components and microbial composition under organic amendment: Implications for pesticide degradation. Frontiers in Microbiology.
Yasir, M., Hossain, A., & Pratap-singh, A. (2025). Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling.
Yasir, M., Khan, A., & Rahman, S. (2025). Environmental factors regulating microbial activity and pesticide degradation: A comprehensive review. Soil Ecology Review, 12(1), 1–20.
Yu, B. (2020). Effects on soil microbial community after exposure to neonicotinoid insecticides thiamethoxam and dinotefuran. Science of the Total Environment.
Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in microbial degradation of carbamate insecticides. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00557
Zhang, C., & al., et. (2018). Metagenomic insights into pesticide biodegradation in soil microbiomes. Environment International. https://doi.org/10.1016/j.envint.2018.03.028
Zhang, L. (2024). Influence of soil texture on the adsorption and biodegradation of pesticides. Journal of Soil Science and Environmental Management.
Zhang, Y., Liu, Q., & Sun, R. (2023). Pesticide-induced alterations in soil microbial communities reduce nitrogen cycle efficiency. Environmental Pollution, 320. https://doi.org/10.1016/j.envpol.2023.121025
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eka Fibriyani, Suwardji Suwardji, Lolita Endang Susilowati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.