Analysis of the Role of Algorithms in the Analysis of Organic Molecular Structures: A Study of Formal Charges and Their Reactivity

Authors

  • Muhali Muhali Universitas Pendidikan Mandalika
  • Hulyadi Hulyadi Universitas Pendidikan Mandalika
  • Gargazi Gargazi Universitas Pendidikan Mandalika
  • Irham Azmi Universitas Pendidikan Mandalika
  • Faizul Bayani Universitas Qamarul Huda Badaruddin

DOI:

https://doi.org/10.36312/q58j9193

Keywords:

Role of Algorithms, Formal Charges, Their Reactivity

Abstract

This study aims to identify students' competency in understanding the formal charge and reactivity of organic molecules through algorithm-based learning and mathematical formulations. A quasi-experimental pretest–posttest design was used with Chemistry Education students who had taken the topic of chemical bonding and Lewis structures. Essay and multiple-choice tests were used to measure the accuracy of Lewis structures, formal charge calculations, charge symbol interpretation, and reactivity predictions. The pretest results showed an average student score of 32.4, while the posttest score increased to 74.1, with an N-gain of 0.62 (moderate–high category). Students showed significant improvement in identifying reactivity centers (electrophilic/nucleophilic) and linking charge distribution to structural stability. The application of algorithms also strengthened their ability to visualize electronic structures, particularly in the context of sp3and sp3 hybridization. Computational chemistry simulations helped students develop stronger symbolic and predictive representations of chemical reactions. This study concludes that the integration of algorithms and symbolic approaches in learning effectively improves students' conceptual and computational literacy in organic chemistry.

Downloads

Download data is not yet available.

References

Ahemad, A. I. A. T., Aejazuddin, Q. M. A., & Khan, G. J. (2021). Phytochemical Screening and In-vitro Free Radical Scavenging Activity of Unani Formulation Habb-e-Asgand. Journal of Pharmaceutical Research International, 33(59B), 1–7. https://doi.org/10.9734/jpri/2021/v33i59B34344

Akbari, A., & Shahrokhi, M. (2024). Unveiling Fairness in Scoring: A Thorough Method for Precise Cutoff Score Calculation in Education Assessment. Quality Assurance in Education: An International Perspective, 32(3), 493–509. https://doi.org/10.1108/QAE-12-2023-0208

Alatas, B. (2011). ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Systems with Applications, 38(10), 13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126

Anbu, A. S., & Venkatachalam, P. (2016). Biological macromolecule cross linked TPP–chitosan complex: A novel nanohybrid for improved ovulatory activity against PCOS treatment in female rats. RSC Advances, 6(97), 94301–94313. https://doi.org/10.1039/C6RA07228C

Awschalom, D., Berggren, K. K., Bernien, H., Bhave, S., Carr, L. D., Davids, P., Economou, S. E., Englund, D., Faraon, A., Fejer, M., Guha, S., Gustafsson, M. V., Hu, E., Jiang, L., Kim, J., Korzh, B., Kumar, P., Kwiat, P. G., Loncar, M., … Zhang, Z. (2021). Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2(1), 017002. https://doi.org/10.1103/PRXQuantum.2.017002

Bauer, B., Bravyi, S., Motta, M., & Chan, G. K.-L. (2020). Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. Chemical Reviews, 120(22), 12685–12717. https://doi.org/10.1021/acs.chemrev.9b00829

Bhandari, S., Mondal, D., Nataraj, S. K., & Balakrishna, R. G. (2019). Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 1(3), 913–936. https://doi.org/10.1039/C8NA00332G

Crowder, C. J., Yik, B. J., Frost, S. J. H., Arellano, D. C.-R. de, & Raker, J. R. (2024). Impact of Prompt Cueing on Level of Explanation Sophistication For Organic Reaction Mechanisms. Journal of Chemical Education, 101(2), 398–410. https://doi.org/10.1021/acs.jchemed.3c00710

D. Clayton, A., A. Manson, J., J. Taylor, C., W. Chamberlain, T., A. Taylor, B., Clemens, G., & A. Bourne, R. (2019). Algorithms for the self-optimisation of chemical reactions. Reaction Chemistry & Engineering, 4(9), 1545–1554. https://doi.org/10.1039/C9RE00209J

Gromski, P. S., Henson, A. B., Granda, J. M., & Cronin, L. (2019). How to explore chemical space using algorithms and automation. Nature Reviews Chemistry, 3(2), 119–128. https://doi.org/10.1038/s41570-018-0066-y

Headley, A. D. (2020). Organic Chemistry: Concepts and Applications. John Wiley & Sons.

Holade, Y., Tuleushova, N., Tingry, S., Servat, K., Napporn, T. W., Guesmi, H., Cornu, D., & Kokoh, K. B. (2020). Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catalysis Science & Technology, 10(10), 3071–3112. https://doi.org/10.1039/C9CY02446H

Hulyadi, H., Bayani, F., Muhali, M., Khery, Y., & Gargazi, G. (2023). Correlation Profile of Cognition Levels and Student Ability to Solve Problems in Biodiesel Synthesis. Jurnal Penelitian Pendidikan IPA, 9(6), Article 6. https://doi.org/10.29303/jppipa.v9i6.3130

Hulyadi, H., Muhali, M., & Fibonacci, A. (2023). Identification of Student Conceptions on the Molecular Structure of Organic Compounds Using Question. Hydrogen: Jurnal Kependidikan Kimia, 11(3), 328–338. https://doi.org/10.33394/hjkk.v11i3.8135

Jonnalagadda, S. V. R., Ornithopoulou, E., Orr, A. A., Mossou, E., Forsyth, V. T., Mitchell, E. P., Bowler, M. W., Mitraki, A., & Tamamis, P. (2017). Computational design of amyloid self-assembling peptides bearing aromatic residues and the cell adhesive motif Arg-Gly-Asp. Molecular Systems Design & Engineering, 2(3), 321–335. https://doi.org/10.1039/C7ME00016B

Keenan, T. M., & Folch, A. (2007). Biomolecular gradients in cell culture systems. Lab on a Chip, 8(1), 34–57. https://doi.org/10.1039/B711887B

Ling, Y., Liping, S., & Yongliang, Z. (2018). Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking. Food & Function, 9(10), 5251–5259. https://doi.org/10.1039/C8FO00569A

Quack, M., Seyfang, G., & Wichmann, G. (2022). Perspectives on parity violation in chiral molecules: Theory, spectroscopic experiment and biomolecular homochirality. Chemical Science, 13(36), 10598–10643. https://doi.org/10.1039/D2SC01323A

Srivastava, R. (2020). Interactions, electronic and optical properties of nanographene–peptide complexes: A theoretical study. RSC Advances, 10(63), 38654–38662. https://doi.org/10.1039/D0RA07961H

Stewart, B., Hylton, D. J., & Ravi, N. (2013). A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry. Journal of Chemical Education, 90(5), 609–612. https://doi.org/10.1021/ed300807y

Thaenchaikun, C., & Kanjanasit, K. (2025). A Comparative Study of OSPF Metrics in Routing Algorithms for Dynamic Path Selection in Network Security. ASEAN Journal of Scientific and Technological Reports, 28(2), e256556–e256556. https://doi.org/10.55164/ajstr.v28i2.256556

Yik, B. J., Dood, A. J., Frost, S. J. H., & de Arellano, D. C.-R. (2023). Generalized Rubric for Level of Explanation Sophistication for Nucleophiles in Organic Chemistry Reaction Mechanisms. Chemistry Education Research and Practice, 24(1), 263–282. https://doi.org/10.1039/d2rp00184e

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Muhali, M., Hulyadi, H., Gargazi, G., Azmi, I., & Bayani, F. (2025). Analysis of the Role of Algorithms in the Analysis of Organic Molecular Structures: A Study of Formal Charges and Their Reactivity. Empiricism Journal, 6(4), 2649-2657. https://doi.org/10.36312/q58j9193