Analisa Lama Penggunaan Kumbung terhadap Produktivitas Jamur Merang (Volvariella volvaceae)

Authors

  • Hulyadi Hulyadi Universitas Pendidikan Mandalika

DOI:

https://doi.org/10.36312/ej.v3i1.723

Keywords:

Produktivitas, Jamur Merang, Volvariella volvaceae, Productivity, straw mushroom

Abstract

Lingkungan, kualitas media, teknik inokulasi bibit dan kualitas bibit menjadi beberapa faktor yang mempengaruhi produktivitas jamur merang. Kondisi lingkungan menjadi salah satu faktor utama. Kondisi lingkungan ideal harus terus dijaga petani jamur merang, produksi jamur merang tetap setabil. Suhu ruangan menjadi faktor yang harus diperhatikan untuk menjaga tumbuh kembang jamur merang. Suhu ruangan bisa ideal jika kondisi kumbung dan kualitas media terjaga. Peneliti ini bertujuan menganilsa produktivitas kumbung selama satu tahun pertama produksi. Produktivitas diukur melalui lama produksi dan massa jamur merang yang diperoleh. Produksi jamur merang rata-rata dalam setiap bulannya sebesar 103,7 Kg dengan lama produksi rata-rata 30 hari.  Korelasi anatara jumlah produksi dan lama panen berkorelasi positif ini dibuktikan dengan nilai R hitung 0,978>R tabel 0, 4575.  Berdasarkan kajian lapangan dan analisis data diperoleh jumlah produksi berkorelasi positif dengan lama panen dan produksi jamur dan akan menurun seiring bertambahnya usia kumbung. Menurunnya produktivitas diakibatnya karena menurunnya kualitas media tanam. Kontaminan dan sulitnya merekayasa iklim kumbung menjadi faktor lain yang berpengaruh terhadap menurunnya jumlah dan lama produksi jamur merang.

Analysis of the Length of Use of Kumbung on the Productivity of Straw Mushrooms (Volvariella volvaceae)

Abstract

The environment, the quality of the media, the inoculation technique of seedlings and the quality of seedlings are some of the factors that affect the productivity of the straw mushrooms. Environmental conditions are one of the main factors. Ideal environmental conditions must be maintained by straw mushroom farmers, the production of straw mushrooms remains as stable as possible. Room temperature is a factor that must be considered to maintain the growth and development of straw mushrooms. Room temperature can be ideal if the condition of the kumbung and the quality of the media are maintained. This researcher aims to analyze the productivity of the kumbung during the first year of production. Productivity is measured through the length of production and the mass of the acquired straw mushroom. The average production of straw mushrooms in each month is 103.7 Kg with an average production duration of 30 days.  The correlation between the amount of production and the duration of harvest is positively correlated with the calculated R value of 0.978>R table 0.4575.  Based on field studies and data analysis, the amount of production is positively correlated with the length of harvest and mushroom production and will decrease with age. The decline in productivity is due to the decline in the quality of the growing media. Contaminants and the difficulty of engineering a continuous climate are other factors that influence the decrease in the number and duration of straw mushroom production.

References

Ajmal, M., Shi, A., Awais, M., Mengqi, Z., Zihao, X., Shabbir, A., Faheem, M., Wei, W., & Ye, L. (2021). Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. Journal of Environmental Chemical Engineering, 9(4), 105453. https://doi.org/10.1016/j.jece.2021.105453

Ba, D. M., Gao, X., Al-Shaar, L., Muscat, J. E., Chinchilli, V. M., Beelman, R. B., & Richie, J. P. (2021). Mushroom intake and depression: A population-based study using data from the US National Health and Nutrition Examination Survey (NHANES), 2005–2016. Journal of Affective Disorders, 294, 686–692. https://doi.org/10.1016/j.jad.2021.07.080

Cao, R., Wang, J., Ben, W., & Qiang, Z. (2020). The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. Chemosphere, 250, 126181. https://doi.org/10.1016/j.chemosphere.2020.126181

Chagas, F. O., Pessotti, R. de C., Caraballo-Rodríguez, A. M., & Pupo, M. T. (2018). Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 47(5), 1652–1704. https://doi.org/10.1039/C7CS00343A

Ezugworie, F. N., Igbokwe, V. C., & Onwosi, C. O. (2021). Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. Science of The Total Environment, 784, 147191. https://doi.org/10.1016/j.scitotenv.2021.147191

F.Bastida, et al. (2016). The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S1874391915300774

Friedman, M. (2015). Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. Journal of Agricultural and Food Chemistry, 63(32), 7108–7123. https://doi.org/10.1021/acs.jafc.5b02914

González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., Contreras, J., & Belmares, R. (2020). Edible mushrooms as a novel protein source for functional foods. Food & Function, 11(9), 7400–7414. https://doi.org/10.1039/D0FO01746A

Guo, H., Gu, J., Wang, X., Tuo, X., Yu, J., & Zhang, R. (2019). Key role of cyromazine in the distribution of antibiotic resistance genes and bacterial community variation in aerobic composting. Bioresource Technology, 274, 418–424. https://doi.org/10.1016/j.biortech.2018.12.005

Hamad, G. M., Elaziz, A. I. A., Hassan, S. A., Shalaby, M. A., & Mohdaly, A. A. A. azim. (2020). Chemical Composition, Antioxidant, Antimicrobial and Anticancer Activities of Licorice (Glycyrrhiza glabra L.) Root and Its Application in Functional Yoghurt. Journal of Food and Nutrition Research, 8(12), 707–715.

He, P., Zhang, Y., & Li, N. (2021). The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: A review. Food & Function, 12(5), 1856–1881. https://doi.org/10.1039/D0FO02342F

Hulyadi, H., Indah, D. R., & Suyanti, I. (2021). Effect of Tauge Extract and Starter Volume on the Quality of Liquid Fertilizer Whey Tofu. Jurnal Ilmiah IKIP Mataram, 8(1), 86–98.

Jianjun Zhang, et al. (2016). Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0141813015300222

Kamaliah, N., Salim, S., Abdullah, S., Nobilly, F., Mat, S., Norhisham, A. R., Tohiran, K. A., Zulkifli, R., Lechner, A. M., & Azhar, B. (2022). Evaluating the experimental cultivation of edible mushroom, Volvariella volvacea underneath tree canopy in tropical agroforestry systems. Agroforestry Systems, 96(1), 35–47. https://doi.org/10.1007/s10457-021-00685-9

Kosti?, M., Smiljkovi?, M., Petrovi?, J., Glamo?lija, J., Barros, L., Ferreira, I. C. F. R., ?iri?, A., & Sokovi?, M. (2017). Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food & Function, 8(9), 3239–3249. https://doi.org/10.1039/C7FO00887B

Lei Ma, et al. (2021). Functional characterization of a novel copper-dependent lytic polysaccharide monooxygenase TgAA11 from Trichoderma guizhouense NJAU 4742 in the oxidative degradation of chitin—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0144861721000953

Lin, C., Cheruiyot, N. K., Bui, X.-T., & Ngo, H. H. (2022). Composting and its application in bioremediation of organic contaminants. Bioengineered, 13(1), 1073–1089. https://doi.org/10.1080/21655979.2021.2017624

Ma, L., Li, G., Xu, H., Liu, Z., Wan, Q., Liu, D., & Shen, Q. (2022). Structural and functional study of a novel lytic polysaccharide monooxygenase cPMO2 from compost sample in the oxidative degradation of cellulose. Chemical Engineering Journal, 433, 134509. https://doi.org/10.1016/j.cej.2022.134509

Meng, Q., Xu, X., Zhang, W., Men, M., Xu, B., Deng, L., Bello, A., Jiang, X., Sheng, S., & Wu, X. (2019). Bacterial community succession in dairy manure composting with a static composting technique. Canadian Journal of Microbiology, 65(6), 436–449. https://doi.org/10.1139/cjm-2018-0560

Mengqi. Z., et al. (2021). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting | SpringerLink. https://link.springer.com/article/10.1007/s13399-021-01438-5

Precioso De Oliveira, B. M., Leal, M. A., França De Oliveira, D., & García, A. C. (2022). Chemical and spectroscopy characterization of a compost from food waste applying the hot composting Berkeley method. International Journal of Recycling Organic Waste in Agriculture, 11(2), 153–164. https://doi.org/10.30486/ijrowa.2021.1897439.1052

Qian, X., Sun, W., Gu, J., Wang, X.-J., Zhang, Y.-J., Duan, M.-L., Li, H.-C., & Zhang, R.-R. (2016). Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. Bioresource Technology, 220, 425–432. https://doi.org/10.1016/j.biortech.2016.08.101

Ramsaha, S., Neergheen-Bhujun, V. S., Verma, S., Kumar, A., Bharty, R. K., Chaudhary, A. K., Sharma, P., Singh, R. K., Beejan, P. H. F., Kyung-Sun, K., & Bahorun, T. (2016). Modulation of hepatocarcinogenesis in N-methyl-N-nitrosourea treated Balb/c mice by mushroom extracts. Food & Function, 7(1), 594–609. https://doi.org/10.1039/C5FO00870K

Støpamo, F. G., Røhr, Å. K., Mekasha, S., Petrovi?, D. M., Várnai, A., & Eijsink, V. G. H. (2021). Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Journal of Biological Chemistry, 297(6), 101421. https://doi.org/10.1016/j.jbc.2021.101421

Thawthong, A., Karunarathna, S., Thongklang, N., Chukeatirote, E., Kakumyan, P., Chamyuang, S., Rizal, L., Mortimer, P., Xu, J., Callac, P., & Hyde, K. (2014). Discovering and Domesticating Wild Tropical Cultivatable Mushrooms. Chiang Mai Journal of Science, 41, 731–764.

Wen, P., Tang, J., Wang, Y., Liu, X., Yu, Z., & Zhou, S. (2021). Hyperthermophilic composting significantly decreases methane emissions: Insights into the microbial mechanism. Science of The Total Environment, 784, 147179. https://doi.org/10.1016/j.scitotenv.2021.147179

Zepp, R. G., Iii, D. J. E., Paul, N. D., & Sulzberger, B. (2011). Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks. Photochemical & Photobiological Sciences, 10(2), 261–279. https://doi.org/10.1039/C0PP90037K

Zhang, J., Lin, H., Ma, J., Sun, W., Yang, Y., & Zhang, X. (2019). Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Science of The Total Environment, 649, 396–404. https://doi.org/10.1016/j.scitotenv.2018.08.212

Zhang, L., Gu, J., Wang, X., Sun, W., Yin, Y., Sun, Y., Guo, A., & Tuo, X. (2017). Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. Bioresource Technology, 244, 252–260. https://doi.org/10.1016/j.biortech.2017.07.035.

Downloads

Published

2022-06-30

How to Cite

Hulyadi, H. (2022). Analisa Lama Penggunaan Kumbung terhadap Produktivitas Jamur Merang (Volvariella volvaceae). Empiricism Journal, 3(1), 9–16. https://doi.org/10.36312/ej.v3i1.723

Issue

Section

Articles