Pengalaman Mengajar Fisika Modern Menggunakan Simulasi Virtual PhET: Analisis Kinerja Keterampilan Penalaran Mahasiswa
DOI:
https://doi.org/10.36312/ej.v3i2.997Keywords:
Reasoning Skills, PhET Virtual Simulation, Expository, Modern Physics.Abstract
Kesulitan tutor pada semua jenis pembelajaran (tatap muka dan online) adalah ketika mereka mengajarkan konsep abstrak pada perkuliahan fisika modern, terutama untuk meningkatkan keterampilan penalaran mahasiswa. Kami melihat peluang pada kemajuan teknologi digital dapat membantu mengatasi masalah ini. Studi saat ini bertujuan untuk menganalisis kinerja keterampilan penalaran mahasiswa pada mata kuliah fisika modern menggunakan simulasi virtual PhET yang terintegrasi di dalam platform LMS. Penelitian ini menggunakan desain ekperimen, dimana dua kelompok sampel disiapkan (kelompok eksperimen dan kontrol), dan diintervensi dengan dua proses belajar. Kelompok eksperimen dibelajarkan dengan simulasi virtual PhET yang terintegrasi di dalam platform LMS, sementara kelompok kontrol dengan pembelajaran tatap muka dengan metode ekspositori. Kedua kelompok sampel adalah mahasiswa yang menempuh matakuliah fisika modern di FKIP Universitas Mataram. Instrumen yang telah valid dipekerjakan untuk mengukur kinerja keterampilan penalaran mahasiswa sebagai pretest dan posttest. Hasil analisis pretest dan posttest menunjukkan bahwa kinerja keterampilan penalaran mahasiswa pada perkuliahan fisika modern meningkat dengan intervensi pembelajaran menggunakan simulasi virtual PhET terintegrasi dengan platform LMS. Hasil analisis statistik juga menunjukkan keunggulan intervensi pembelajaran menggunakan simulasi virtual PhET terintegrasi dengan platform LMS jika dibandingkan dengan metode ekpositori.
The Experience of Teaching Modern Physics Using PhET Virtual Simulations: An Analysis of Student Reasoning Skill Performance
Abstract
The difficulty for tutors in all types of learning (face-to-face and online) is when they teach abstract concepts in modern physics courses, especially to improve students' reasoning skills. We see an opportunity in advances in digital technology that can help overcome this problem. The current study aims to analyze the performance of students' reasoning skills in modern physics courses using PhET virtual simulations that are integrated into the LMS platform. This study used an experimental design, in which two sample groups were prepared (experimental and control groups), and intervened with two learning processes. The experimental group was taught by PhET virtual simulation integrated into the LMS platform, while the control group was taught by face-to-face learning using the expository method. The two sample groups are students taking modern physics courses at FKIP, University of Mataram. Instruments that have been declared valid are employed to measure the performance of students' reasoning skills as a pretest and posttest. The results of the pretest and posttest analysis show that the performance of students' reasoning skills in modern physics courses increases with learning interventions using PhET virtual simulations integrated with the LMS platform. The results of the statistical analysis shows the advantages of learning interventions using PhET virtual simulations integrated with the LMS platform when compared to the expository method.
Downloads
References
Ali, R., Bhadra, J., Siby, N., Ahmad, Z., & Al-Thani, N. J. (2021). A STEM Model to Engage Students in Sustainable Science Education through Sports: A Case Study in Qatar. Sustainability, 13(6), 3483. https://doi.org/10.3390/su13063483
Anwaruddin, S. M. (2015). ICTs in Language and Literacy Education in Bangladesh: A Critical Review. Current Issues in Education, 18(1).
Berkowitz, M., & Stern, E. (2018). Which Cognitive Abilities Make the Difference? Predicting Academic Achievements in Advanced STEM Studies. Journal of Intelligence, 6(4), 48. https://doi.org/10.3390/jintelligence6040048
Chan, M.-N., & Nagatomo, D. (2022). Study of STEM for Sustainability in Design Education: Framework for Student Learning and Outcomes with Design for a Disaster Project. Sustainability, 14(1), 312. https://doi.org/10.3390/su14010312
Chen, L.-L. (2016). A Model for Effective Online Instructional Design. Literacy Information and Computer Education Journal (LICE, 6(2), 2303–2308.
Chiasson, K., Terras, K., & Smart, K. (2015). Faculty Perceptions Of Moving A Face-To-Face Course To Online Instruction. Journal of College Teaching & Learning (TLC), 12(3), 321–240. https://doi.org/10.19030/tlc.v12i3.9315
de la Torre, L., Guinaldo, M., Heradio, R., & Dormido, S. (2015). The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle. IEEE Transactions on Industrial Informatics, 11(4), 934–945. https://doi.org/10.1109/TII.2015.2443721
Dewey, J. (1933). How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process. D.C. Heath & Co Publishers.
Diwakar, S., Kumar, D., Radhamani, R., Nizar, N., Nair, B., Sasidharakurup, H., & Achuthan, K. (2015). Role of ICT-enabled virtual laboratories in biotechnology education: Case studies on blended and remote learning. 2015 International Conference on Interactive Collaborative Learning (ICL), 915–921. https://doi.org/10.1109/ICL.2015.7318149
El Kharki, K., Bensamka, F., & Berrada, K. (2020). Enhancing Practical Work in Physics Using Virtual Javascript Simulation and LMS Platform. In D. Burgos (Ed.), Radical Solutions and eLearning (pp. 131–146). Springer Singapore. https://doi.org/10.1007/978-981-15-4952-6_9
El Kharki, K., Berrada, K., & Burgos, D. (2021). Design and Implementation of a Virtual Laboratory for Physics Subjects in Moroccan Universities. Sustainability, 13(7), 3711. https://doi.org/10.3390/su13073711
Ennis, R. (2018). Critical Thinking Across the Curriculum: A Vision. Topoi, 37(1), 165–184.
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research (8th ed.). Mc Graw Hill.
Fraile-Fernández, F. J., Martínez-García, R., & Castejón-Limas, M. (2021). Constructionist Learning Tool for Acquiring Skills in Understanding Standardised Engineering Drawings of Mechanical Assemblies in Mobile Devices. Sustainability, 13(6), 3305. https://doi.org/10.3390/su13063305
Hake, R., R. (1999). Analyzing change/gain scores. Indiana University: Woodland Hills, CA - USA.
Hassan, H., Martinez-Rubio, J.-M., Perles, A., Capella, J.-V., Dominguez, C., & Albaladejo, J. (2013). Smartphone-Based Industrial Informatics Projects and Laboratories. IEEE Transactions on Industrial Informatics, 9(1), 557–566. https://doi.org/10.1109/TII.2012.2185806
Havola, S., Haavisto, E., Mäkinen, H., Engblom, J., & Koivisto, J.-M. (2021). The Effects of Computer-Based Simulation Game and Virtual Reality Simulation in Nursing Students’ Self-evaluated Clinical Reasoning Skills. Computers, Informatics, Nursing: CIN, 39(11), 725–735. https://doi.org/10.1097/CIN.0000000000000748
Johnson, K. E., & Golombek, P. R. (2016). Mindful L2 Teacher Education: A Sociocultural Perspective on Cultivating Teachers’ Professional Development (1st ed.). Routledge. https://doi.org/10.4324/9781315641447
Kong, S. F., & Mohd Matore, M. E. E. (2022). Can a Science, Technology, Engineering, and Mathematics (STEM) Approach Enhance Students’ Mathematics Performance? Sustainability, 14(1), 379. https://doi.org/10.3390/su14010379
Lewin, C., & McNicol, S. (2015). Supporting the Development of 21st Century Skills through ICT. Universität Potsdam, 7, 181–198.
Näykki, P., Laru, J., Vuopala, E., Siklander, P., & Järvelä, S. (2019). Affective Learning in Digital Education—Case Studies of Social Networking Systems, Games for Learning, and Digital Fabrication. Frontiers in Education, 4. https://www.frontiersin.org/article/10.3389/feduc.2019.00128
Pedrosa-de-Jesus, H., Moreira, A., Lopes, B., & Watts, M. (2014). So much more than just a list: Exploring the nature of critical questioning in undergraduate sciences. Research in Science & Technological Education, 32(2), 115–134. https://doi.org/10.1080/02635143.2014.902811
Prayogi, S., & Verawati, N. N. S. P. (2020). The Effect of Conflict Cognitive Strategy in Inquiry-based Learning on Preservice Teachers’ Critical Thinking Ability. Journal of Educational, Cultural and Psychological Studies (ECPS Journal), 0(21), 27–41. https://doi.org/10.7358/ecps-2020-021-pray
Prayogi, S., Yuanita, L., & Wasis. (2018). Critical Inquiry Based Learning: A Model of Learning to Promote Critical Thinking Among Prospective Teachers of Physic. Journal of Turkish Science Education, 15(1), 43–56.
Ramma, Y., Bholoa, A., Watts, M., & Nadal, P. S. (2018). Teaching and learning physics using technology: Making a case for the affective domain. Education Inquiry, 9(2), 210–236. https://doi.org/10.1080/20004508.2017.1343606
Restivo, M. T., & Cardoso, A. (2013). Exploring Online Experimentation. International Journal of Online and Biomedical Engineering (IJOE), 9(S8), 4. https://doi.org/10.3991/ijoe.v9iS8.3448
Sawang, S., Newton, C., & Jamieson, K. (2013). Increasing learners’ satisfaction/intention to adopt more e?learning. Education + Training, 55(1), 83–105. https://doi.org/10.1108/00400911311295031
Stoyanov, S., Glushkova, T., Tabakova-Komsalova, V., Stoyanova-Doycheva, A., Ivanova, V., & Doukovska, L. (2022). Integration of STEM Centers in a Virtual Education Space. Mathematics, 10(5), 744. https://doi.org/10.3390/math10050744
Verawati, N. N. S. P., Hikmawati, H., Prayogi, S., & Bilad, M. R. (2021). Reflective Practices in Inquiry Learning: Its Effectiveness in Training Pre-Service Teachers’ Critical Thinking Viewed from Cognitive Styles. Jurnal Pendidikan IPA Indonesia, 10(4), 505–514. https://doi.org/10.15294/jpii.v10i4.31814
Westera, W. (2015). Reframing the Role of Educational Media Technologies. Quarterly Review of Distance Education, 16(2), 19–32.
Yoon, H.-G., Kim, M., & Lee, E. A. (2021). Visual Representation Construction for Collective Reasoning in Elementary Science Classrooms. Education Sciences, 11(5), 246. https://doi.org/10.3390/educsci11050246
Yu, J., & Jee, Y. (2021). Analysis of Online Classes in Physical Education during the COVID-19 Pandemic. Education Sciences, 11(1), 3. https://doi.org/10.3390/educsci11010003
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ni Nyoman Sri Putu Verawati, Hikmawati Hikmawati, Wahyudi Wahyudi, Saiful Prayogi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.