Quantification of Phenolic Content in Bridelia Micrantha Bark Extract Using Folin-Ciocalteu Method
DOI:
https://doi.org/10.36312/jar.v4i1.3167Keywords:
Bridelia micrantha, phenolic content, Folin–Ciocalteu, antioxidant activity, medicinal plant, gallic acid equivalent, phytochemical screeningAbstract
The scientific validation of medicinal plants is essential to ensure the safety, efficacy, and reproducibility of traditional remedies in modern healthcare. Bridelia micrantha, although widely used in Southeast Asian and African ethnomedicine, has not been fully standardized despite claims of antioxidant and anti-inflammatory properties. This study determined the total phenolic content (TPC) of B. micrantha stem bark extract to support its pharmacological relevance. An experimental design was implemented using 80% methanol maceration for extraction, qualitative screening with FeCl?, and quantitative analysis via the Folin-Ciocalteu method. Absorbance was measured at 760 nm using UV-Vis spectrophotometry, with gallic acid as a calibration standard (r² = 0.9978). The extract showed a phenolic content of 22.14% gallic acid equivalent (GAE), indicating a substantial presence of antioxidant-related compounds. These findings confirm the traditional use of B. micrantha and highlight its potential for standardized herbal formulations. The study also bridges a gap between ethnobotanical knowledge and phytochemical evidence, contributing to the integration of traditional plant-based remedies into evidence-based healthcare systems.
References
Abumelha, H., Sayqal, A., Snari, R., Alkhamis, K., Alharbi, A., Al?Ahmed, Z., … & El?Metwaly, N. (2024). Novel deliberately sensitive and selective tetrahydrozoline voltammetric sensors integrated with a copper oxide nanoparticle/zeolite platform. Acs Omega. https://doi.org/10.1021/acsomega.4c00370
Alchera, F., Ginepro, M., & Giacalone, G. (2022). Microwave-assisted extraction of polyphenols from blackcurrant by-products and possible uses of the extracts in active packaging. Foods, 11(18), 2727. https://doi.org/10.3390/foods11182727
Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., Oryem?Origa, H., … & Jassoy, C. (2021). A review of the toxicity and phytochemistry of medicinal plant species used by herbalists in treating people living with hiv/aids in uganda. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.615147
Anywar, G., Kakudidi, E., Oryem?Origa, H., Schubert, A., & Jassoy, C. (2022). Cytotoxicity of medicinal plant species used by traditional healers in treating people suffering from hiv/aids in uganda. Frontiers in Toxicology, 4. https://doi.org/10.3389/ftox.2022.832780
Assogba, P., Agbodjento, E., Akotègnon, R., Dougnon, V., & Klotoé, J. (2021). Ethnopharmacological survey of six medicinal plants used in the traditional treatment of urinary tract infections and other infectious diseases. NRFHH, 1(2), 125-132. https://doi.org/10.53365/nrfhh/142607
Assogba, P., Dougnon, V., Hounsa, E., Badjabaissi, P., Tari, R., Klotoé, J., … & Diallo, A. (2021). Assessment of larval toxicity and the teratogenic effect of three medicinal plants used in the traditional treatment of urinary tract infections in benin. Biomed Research International, 2021(1). https://doi.org/10.1155/2021/1401945
Asumang, P., Boakye, Y., Akanwariwiak, W., Adu, F., Yakubu, J., Entsie, P., … & Gobe, V. (2022). Anthelmintic properties of methanol extract of bridelia micrantha (hochst) baill leaves. Applied Microbiology Theory ? Technology, 3(2), 20-30. https://doi.org/10.37256/amtt.3220221515
Bayani, F., Kurniasari, B., Hamdani, A., Yuliana, D., Wahyuni, I., & Mujaddid, J. (2023). Identification of secondary metabolite compounds from melandean (bridelian micrantha) leaf extract. Hydrogen Jurnal Kependidikan Kimia, 11(6), 858. https://doi.org/10.33394/hjkk.v11i6.9879
Bayani, F., Sudiana, E., Hamdani, A., Wahyuni, I., Mujaddid, J., & Hulyadi, H. (2023). Uji aktivitas antibakteri ekstrak daun bridelia micranth lombok pada escherichia coli. Bioscientist Jurnal Ilmiah Biologi, 11(2), 1710. https://doi.org/10.33394/bioscientist.v11i2.9931
COSTEA, L. (2021). Spectrophotometric evaluation of flavonoids, phenolcarboxylic acids and total phenolic contents of several indigenous herbal products with potential hepatoprotective effect. Farmacia, 69(6), 1176-1181. https://doi.org/10.31925/farmacia.2021.6.23
Chaitanya, M., Baye, H., Ali, H., & Usamo, F. (2022). Traditional african medicine.. https://doi.org/10.5772/intechopen.96576
Das, S., Dwivedi, A., Tiwari, V., Yadav, V., Satpathy, S., Mohapatra, D., … & Patra, A. (2024). Exploring the antioxidant potential of a notorious weed using a microwave-based transformation to gold nanoparticles: the case of mikania micrantha.. https://doi.org/10.21203/rs.3.rs-4451148/v1
Deocaris, C., Micor, J., Zhang, M., Alinsug, M., & Mojica, E. (2023). Phenolic content and antioxidant capacity of lagerstroemia speciosa (banaba) and blumea balsamifera (sambong) herbal teas sold on-line in the philippines: a cost-effectiveness analysis. Bangladesh Journal of Scientific and Industrial Research, 58(4), 265-270. https://doi.org/10.3329/bjsir.v58i4.68402
Duarte, A., Waczuk, E., Roversi, K., Silva, M., Barros, L., Cunha, F., … & Bürger, M. (2015). Polyphenolic composition and evaluation of antioxidant activity, osmotic fragility and cytotoxic effects of raphiodon echinus (nees & mart.) schauer. Molecules, 21(1), 2. https://doi.org/10.3390/molecules21010002
Etono, C., Lienou, L., Dongmo, F., Kognou, A., Tchientcheu, R., Etame, R., … & Ngane, R. (2023). Acute and sub-chronic toxicity evaluation of the crude methanolic bark extract of <i>bridelia micrantha</i> (hochst.) baill. (phyllanthaceae) and its fraction. Journal of Biosciences and Medicines, 11(10), 76-89. https://doi.org/10.4236/jbm.2023.1110008
Fagbohun, E. and Bamikole, A. (2019). Antifungal effects of methanolic extract of stem bark of bridelia ferruginea benth. leaves of aloe vera l. and stem bark of alstonia boonei de wild. Microbiology Research Journal International, 1-11. https://doi.org/10.9734/mrji/2019/v27i230094
Fartwat, N. and Salem, K. (2023). Antifungal activity of some plants used in yemeni herbal medicine. Electronic Journal of University of Aden for Basic and Applied Sciences, 4(3), 249-261. https://doi.org/10.47372/ejua-ba.2023.3.274
Farzaei, F., Morovati, M., Farjadmand, F., & Farzaei, M. (2017). A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian medicine. Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 944-955. https://doi.org/10.1177/2156587216686461
Firew, A., Israel, P., & Abdurezak, M. (2020). Extraction and phytochemicals determination of traditional medicinal plants for anti-microbial susceptibility test. Health Sci, 1(2020). https://doi.org/10.15342/hs.2020.236
Gontar, ?., Geszprych, A., Drutowska, A., & Osi?ska, E. (2024). Phytochemical composition, antioxidant and antimicrobial activity of three monarda species: m. bradburiana l. c. beck, m. × media willd., and m. punctata l.. Chemistry & Biodiversity, 21(7). https://doi.org/10.1002/cbdv.202301910
Gómez-Urios, C., Viñas-Ospino, A., Puchades-Colera, P., López-Malo, D., Frígola, A., Esteve, M., … & Blesa, J. (2022). Sustainable development and storage stability of orange by-products extract using natural deep eutectic solvents. Foods, 11(16), 2457. https://doi.org/10.3390/foods11162457
Habtom, S. and Gebrehiwot, S. (2019). In vitro antimicrobial activities of crude extracts of two traditionally used ethiopian medicinal plants against some bacterial and fungal test pathogens. The International Journal of Biotechnology, 8(2), 104-114. https://doi.org/10.18488/journal.57.2019.82.104.114
Kevin, T., Cédric, Y., Nadia, N., Sidiki, N., Azizi, M., Guy-Armand, G., … & Gustave, L. (2023). Antiplasmodial, antioxidant, and cytotoxic activity of bridelia micrantha a cameroonian medicinal plant used for the treatment of malaria. Biomed Research International, 2023(1). https://doi.org/10.1155/2023/1219432
Khan, A., Islam, R., Alam, M., & Rahman, M. (2018). Investigation of anti-diabetic properties of ethanol leaf extract of bridelia stipularis l. on alloxan induced type-2 diabetic rats. Journal of Advances in Medical and Pharmaceutical Sciences, 18(4), 1-9. https://doi.org/10.9734/jamps/2018/45396
Khurm, M., Chaudhry, B., Uzair, M., & Janbaz, K. (2016). Antimicrobial, cytotoxic, phytotoxic and antioxidant potential of heliotropium strigosum willd.. Medicines, 3(3), 20. https://doi.org/10.3390/medicines3030020
Kim, K., Yoo, H., Jung, J., Lee, R., Hyun, J., Park, J., … & Yeon, J. (2020). Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types. Journal of Functional Biomaterials, 11(2), 22. https://doi.org/10.3390/jfb11020022
Loko, Y., Toffa, J., Djègbé, I., Vodounnon, A., Sinzogan, A., Sahayaraj, K., … & Tamò, M. (2025). Effect of botanical powders and the assassin bug, alloeocranum biannulipes mont. and sign. (hemiptera: reduviidae) against dinoderus porcellus lesne (coleoptera: bostrichidae) infesting yam chips. Open Research Africa, 7, 7. https://doi.org/10.12688/openresafrica.15173.2
Luaces, P., Pascual, M., Pérez, A., & Sanz, C. (2021). An easy-to-use procedure for the measurement of total phenolic compounds in olive fruit. Antioxidants, 10(11), 1656. https://doi.org/10.3390/antiox10111656
Mahomoodally, M., Sinan, K., Béné, K., Zengin, G., Orlando, G., Menghini, L., … & Ferrante, C. (2020). Bridelia speciosa müll.arg. stem bark extracts as a potential biomedicine: from tropical western africa to the pharmacy shelf. Antioxidants, 9(2), 128. https://doi.org/10.3390/antiox9020128
Maroyi, A. (2017). Ethnopharmacology and therapeutic value of bridelia micrantha (hochst.) baill. in tropical africa: a comprehensive review. Molecules, 22(9), 1493. https://doi.org/10.3390/molecules22091493
Nooreen, Z., Kumar, V., & Yadav, N. (2018). Phytopharmaceuticals: a new class of drug in india. Annals of Phytomedicine an International Journal, 7(1). https://doi.org/10.21276/ap.2018.7.1.4
Oguntimehin, S., Ajaiyeoba, E., Ogbole, O., Dada-Adegbola, H., Oluremi, B., & Adeniji, J. (2021). Evaluation of selected nigerian medicinal plants for antioxidant, antimicrobial and cytotoxic activities.. https://doi.org/10.21203/rs.3.rs-142206/v1
Olalekan, M. (2023). Comparative phytochemical and antioxidant analysis of the leaf extracts of two nigerian medicinal plants. Journal of Science and Mathematics Letters, 11(1), 30-38. https://doi.org/10.37134/jsml.vol11.1.4.2023
Olaokun, O., Mkolo, N., Mogale, M., & King, P. (2017). Phytochemical screening, antioxidant, anti-inflammatory, and glucose utilization activities of three south african plants used traditionally to treat diseases. Biology and Medicine, 09(05). https://doi.org/10.4172/0974-8369.1000412
Oniszczuk, A., Widelska, G., Wójtowicz, A., Oniszczuk, T., Wojtunik?Kulesza, K., Dib, A., … & Matwijczuk, A. (2019). Content of phenolic compounds and antioxidant activity of new gluten-free pasta with the addition of chestnut flour. Molecules, 24(14), 2623. https://doi.org/10.3390/molecules24142623
Park, S., Yu, H., & Ahn, S. (2021). Development and validation of a simple method to quantify contents of phospholipids in krill oil by fourier-transform infrared spectroscopy. Foods, 11(1), 41. https://doi.org/10.3390/foods11010041
Ranneh, Y., Bakar, M., Ismail, N., Kormin, F., Mohamed, M., Akim, A., … & Isha, A. (2021). Anti-aging and antioxidant of four traditional malaysian plants using simplex centroid mixture design approach. Saudi Journal of Biological Sciences, 28(12), 6711-6720. https://doi.org/10.1016/j.sjbs.2021.07.048
Rashid, M., Hadi, F., Muzaffar, Z., Asif, H., Akhtar, N., Zahra, M., … & Malik, A. (2022). Cytotoxic effect of kigelia africana plant extracts on liver cancer cells. PJMHS, 16(10), 68-71. https://doi.org/10.53350/pjmhs22161068
Saha, S., Mandal, S., & Chowdhury, H. (2015). Anato-pharmacognostic studies of mikania micrantha kunth: a promising medicinal climber of the family asteraceae. International Journal of Research in Ayurveda and Pharmacy, 6(6), 773-780. https://doi.org/10.7897/2277-4343.066144
Saikia, S., Tamuli, K., Narzary, B., Banik, D., & Bordoloi, M. (2020). Chemical characterization, antimicrobial activity, and cytotoxic activity of mikania micrantha kunth flower essential oil from north east india. Chemical Papers, 74(8), 2515-2528. https://doi.org/10.1007/s11696-020-01077-6
Singh, G., Passari, A., Kumar, N., Kumar, B., Nayak, S., Ram, H., … & Singh, B. (2024). Determination of uplc-esi ms/ms- and gc-ms-based altitudinal variations in the bioactive potential of traditional medicinal plants.. https://doi.org/10.21203/rs.3.rs-4195244/v1
Singh, M., YT, K., Verma, N., Mishra, A., Mani, M., Shukla, D., … & Ahmad, S. (2024). Establishment of quality and safety markers for the identification of amomum seed and cinnamon leaf. International Journal of Ayurvedic Medicine, 15(2), 546-555. https://doi.org/10.47552/ijam.v15i2.4715
Sompong, W. and Adisakwattana, S. (2015). Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0897-8
Souiy, Z., Amri, Z., Sharif, H., Souiy, A., Cheraief, I., Hamden, K., … & Hammami, M. (2023). The use of d-optimal mixture design in optimizing formulation of a nutraceutical hard candy. International Journal of Food Science, 2023, 1-12. https://doi.org/10.1155/2023/7510452
Sumantri, I., Wahyuni, H., & Mustanti, L. (2020). Total phenolic, total flavonoid and phytochemical screening by ftir spectroscopic of standardized extract of mikania micrantha leaf. Pharmacognosy Journal, 12(6), 1395-1401. https://doi.org/10.5530/pj.2020.12.193
Tamokou, J., Bakop, S., & Dongmo, S. (2023). Antibacterial activity of selected medicinal plants and therapeutic potential of bridelia micrantha on excision wound infected with pseudomonas aeruginosa in rat. Journal of Biochemistry International, 32-47. https://doi.org/10.56557/jobi/2023/v10i18257
Thomas, J., Barley, A., Willis, S., Thomas, J., Verghese, M., & Boateng, J. (2020). Effect of different solvents on the extraction of phytochemicals in colored potatoes. Food and Nutrition Sciences, 11(10), 942-954. https://doi.org/10.4236/fns.2020.1110066
Vasiu, A., Cozma, V., Cozma-Petru?, A., B?ie?, M., Spînu, M., Páll, E., … & Gati, G. (2024). Immune-enhancing medicinal plants: are they a one health, one welfare actor?.. https://doi.org/10.5772/intechopen.1004838
Wijekoon, C., Netticadan, T., Sabra, A., Yu, L., Kodikara, C., & Badea, A. (2022). Analyses of fatty acids, proteins, ascorbic acid, bioactive phenolic compounds and antioxidant activity of canadian barley cultivars and elite germplasm. Molecules, 27(22), 7852. https://doi.org/10.3390/molecules27227852
Xu, M., Wu, R., Li, X., Zeng, Y., Liang, J., Fu, K., … & Wang, Z. (2022). Traditional medicine in china for ischemic stroke: bioactive components, pharmacology, and mechanisms. Journal of Integrative Neuroscience, 21(1). https://doi.org/10.31083/j.jin2101026
Zali, M., Fonkoua, M., Daboy, C., Tazon, W., Goda, D., Akamba, B., … & Ngondi, J. (2023). Comparative study of the effect of two extraction solvents on polyphenols content and antioxidant activity of alstonia boonei bark. Asian Journal of Chemical Sciences, 13(4), 7-17. https://doi.org/10.9734/ajocs/2023/v13i4245
Zhao, K., Wonta, K., Xia, J., Zhong, F., & Sharma, V. (2024). Phytochemical profiling and evaluation of antimicrobial activities of common culinary spices: syzygium aromaticum (clove) and piper nigrum (black pepper). Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1447144
Öztürk, T., Ávila?Gálvez, M., Mercier, S., Vallejo, F., Bred, A., Fraisse, D., … & González?Sarrías, A. (2024). Impact of lactic acid bacteria fermentation on (poly)phenolic profile and in vitro antioxidant and anti-inflammatory properties of herbal infusions. Antioxidants, 13(5), 562. https://doi.org/10.3390/antiox13050562
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Faizul Bayani, Ade Sukma Hamdani, Dedent Eka Bimmaharyanto, Hulyadi Hulyadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Journal of Authentic Research agree to the following terms:
- For all articles published in Journal of Authentic Research, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.