Pengembangan Modul Berbasis Problem Based Learning (PBL) pada Materi Laju Reaksi

Authors

  • Anak Agung Ayu Trisna Handayani University of Mataram
  • Muhali Muhali Universitas Pendidikan Mandalika
  • Pahriah Pahriah Universitas Pendidikan Mandalika

DOI:

https://doi.org/10.36312/mj.v3i1.2226

Keywords:

Problem Based Learning, Laju Reaksi, Modul Pembelajaran, Efektivitas, Kepraktisan

Abstract

Penelitian ini bertujuan untuk mengembangkan modul pembelajaran berbasis Problem-Based Learning (PBL) pada materi laju reaksi bagi siswa kelas XI SMA/MA. Modul dikembangkan melalui model 4-D, yang terdiri dari tahapan Define, Design, Develop, dan Disseminate. Pada tahap Define, dilakukan analisis kebutuhan dan tujuan pembelajaran. Tahap Design meliputi penyusunan modul dengan komponen utama berupa pengenalan konsep, penyajian masalah, serta panduan eksperimen laboratorium. Tahap Develop mencakup validasi modul oleh dua ahli kimia, yang menilai aspek kelayakan isi, bahasa, dan tampilan visual dengan hasil rata-rata validasi sebesar 90,34%, mengindikasikan modul sangat layak. Pada tahap Disseminate, modul diujicobakan pada siswa untuk mengukur kepraktisan dan efektivitasnya. Hasil penelitian menunjukkan bahwa modul ini praktis digunakan dalam pembelajaran dengan skor kepraktisan 81%. Efektivitas modul dievaluasi melalui tes pretest dan posttest, yang menunjukkan peningkatan rata-rata nilai siswa dari 49,33% menjadi 81%. Peningkatan ini mencerminkan peningkatan signifikan dalam pemahaman materi serta keterampilan berpikir kritis, analitis, dan pemecahan masalah siswa. Dengan demikian, modul berbasis PBL ini dinyatakan efektif untuk diterapkan dalam pembelajaran kimia, khususnya pada materi laju reaksi, dan direkomendasikan untuk dikembangkan lebih lanjut pada topik-topik kimia lainnya.

Development of Problem-Based Learning (PBL) Module on Reaction Rate Material

 Abstract

This study aims to develop a Problem-Based Learning (PBL) instructional module focused on reaction rates for eleventh-grade high school students (SMA/MA). The module was developed using the 4-D model, which comprises the stages of Define, Design, Develop, and Disseminate. In the Define stage, needs analysis and learning objectives were conducted. The Design stage involved the creation of the module, incorporating key components such as concept introduction, problem presentation, and laboratory experiment guidelines. During the Develop stage, the module was validated by two chemistry experts who assessed its content feasibility, language, and visual presentation, yielding an average validation score of 90.34%, indicating high feasibility. In the Disseminate stage, the module was pilot-tested with students to evaluate its practicality and effectiveness. The results demonstrated that the module is practical for instructional use, receiving a practicality score of 81%. The module’s effectiveness was assessed through pretest and posttest evaluations, which showed an average student score improvement from 49.33% to 81%. This increase reflects a significant enhancement in students' understanding of the material as well as their critical thinking, analytical, and problem-solving skills. Consequently, the PBL-based module is deemed effective for implementation in chemistry education, particularly concerning reaction rates, and is recommended for further development in other chemistry topics.

Author Biographies

References

Abdullah, I. (2024). The influence of problem-based learning models on students' critical thinking ability on natural disaster mitigation material. Jurnal Ilmu Pendidikan (JIP) STKIP Kusuma Negara, 15(2), 159-169. https://doi.org/10.37640/jip.v15i2.1906

Ata, P. (2023). Implementation of the PBL-STEM model to improve students' critical thinking on reaction rate material. Hydrogen Jurnal Kependidikan Kimia, 11(5), 645. https://doi.org/10.33394/hjkk.v11i5.8609

Gehret, A. (2016). Pop?it beads to introduce catalysis of reaction rate and substrate depletion effects. Biochemistry and Molecular Biology Education, 45(2), 179-183. https://doi.org/10.1002/bmb.21000

Hossain, Z., Bumbacher, E., Brauneis, A., Diaz, M., Saltarelli, A., Blikstein, P., & Riedel-Kruse, I. H. (2018). Design Guidelines and Empirical Case Study for Scaling Authentic Inquiry-based Science Learning via Open Online Courses and Interactive Biology Cloud Labs. International Journal of Artificial Intelligence in Education, 28(4), 478–507. https://doi.org/10.1007/s40593-017-0150-3

Kolomuç, A., & Çal?k, M. (2012). A comparison of chemistry teachers’ and grade 11 students’ alternative conceptions of ‘rate of reaction’. Journal of Baltic Science Education, 11(4), 333-346. https://doi.org/10.33225/jbse/12.11.333

Kraska, T. (2020). Establishing a connection for students between the reacting system and the particle model with games and stochastic simulations of the Arrhenius equation. Journal of Chemical Education, 97(7), 1951-1959. https://doi.org/10.1021/acs.jchemed.0c00081

Musengimana, J., Kampire, E., & Ntawiha, P. (2022). Effect of task-based learning on students’ understanding of chemical reactions among selected Rwandan lower secondary school students. Journal of Baltic Science Education, 21(1), 140-155. https://doi.org/10.33225/jbse/22.21.140

Nedungadi, S., & Brown, C. (2020). Thinking like an electron: Concepts pertinent to developing proficiency in organic reaction mechanisms. Chemistry Teacher International, 3(1), 9-17. https://doi.org/10.1515/cti-2019-0020

Ningsih, R. K., & Hidayah, R. (2019). The effectiveness of chemical practicum kit to train science process skill in 10th grade. JCER (Journal of Chemistry Education Research), 3(1), 1–8. https://doi.org/10.26740/jcer.v3n1.p1-8

Olakanmi, E. (2015). The effects of a web-based computer simulation on students’ conceptual understanding of rate of reaction and attitude towards chemistry. Journal of Baltic Science Education, 14(5), 627-640. https://doi.org/10.33225/jbse/15.14.627

Pratiwi, R., & Setiowati, H. (2022). The implementation of education for sustainable development-oriented problem-based learning in practical work for making alum. Journal of Educational Chemistry (JEC), 4(2), 125-132. https://doi.org/10.21580/jec.2022.4.2.13500

Rodriguez, J., Harrison, A., & Becker, N. (2020). Analyzing students’ construction of graphical models: How does reaction rate change over time?. Journal of Chemical Education, 97(11), 3948-3956. https://doi.org/10.1021/acs.jchemed.0c01036

Seethaler, S., Czworkowski, J., & Wynn, L. (2017). Analyzing general chemistry texts’ treatment of rates of change concepts in reaction kinetics reveals missing conceptual links. Journal of Chemical Education, 95(1), 28-36. https://doi.org/10.1021/acs.jchemed.7b00238

Sugiharti, G., & Azura, W. (2021). Learning model and logical thinking ability in redox reaction learning. Jurnal Pendidikan Sains Indonesia, 9(4), 590-601. https://doi.org/10.24815/jpsi.v9i4.20076

Xu, E., Wang, W., & Wang, Q. (2023). The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanities and Social Sciences Communications, 10(1), 1–11. https://doi.org/10.1057/s41599-023-01508-1

Zhao, Y. (2023). Visualizing chemical kinetics process by portable flow reactor. Journal of Chemical Education, 100(12), 4756-4762. https://doi.org/10.1021/acs.jchemed.3c00414

Zulkarnain, M. azmi, Syaiful, S., & Suratno, S. (2023). Using learning models problem based learning to improve students’ mathematical critical thinking skills. Desimal: Jurnal Matematika, 6(2), 153–162. https://doi.org/10.24042/djm.v6i2.18087

Downloads

Published

2024-05-30

Issue

Section

Original Research Article

How to Cite

Handayani, A. A. A. T., Muhali, M., & Pahriah, P. (2024). Pengembangan Modul Berbasis Problem Based Learning (PBL) pada Materi Laju Reaksi. Multi Discere Journal, 3(1), 1-10. https://doi.org/10.36312/mj.v3i1.2226