Identifikasi Kandungan Tembaga (Cu) pada Batuan Tambang Emas Tradisional di Sumbawa melalui Metode Kopresipitasi dan Spektrofotometri Serapan Atom

Authors

  • Muhammad Nur Universitas Pendidikan Madalika
  • Sukainil Ahzan Universitas Pendidikan Madalika
  • Dwi Pangga Universitas Pendidikan Madalika

DOI:

https://doi.org/10.36312/mj.v2i1.2741

Keywords:

Tembaga (Cu), Tambang Emas Rakyat, Kopresipitasi, AAS, Eksplorasi Mineral

Abstract

Penelitian ini bertujuan untuk mengidentifikasi kandungan tembaga (Cu) pada batuan dari lokasi tambang emas rakyat di Pulau Sumbawa sebagai dasar eksplorasi logam sekunder yang potensial. Urgensi studi ini berangkat dari minimnya data sistematis mengenai keberadaan logam selain emas di lokasi penambangan tradisional, padahal logam-logam tersebut, khususnya tembaga, memiliki nilai ekonomis dan potensi risiko lingkungan. Tiga sampel batuan diambil dari lokasi Olat Pakirum, Upak, dan Labaong, lalu dianalisis menggunakan metode kopresipitasi untuk preparasi sampel, dan AAS (Atomic Absorption Spectrophotometry) untuk kuantifikasi kandungan Cu. Hasil menunjukkan bahwa batuan dari Pakirum memiliki kandungan Cu sebesar 1063,93 ppm (sekitar 1,06%), yang berada dalam kisaran nilai ekonomis. Sebaliknya, Upak dan Labaong masing-masing memiliki kandungan 86,54 ppm dan 6,71 ppm. Warna filtrat dan residu dari proses kopresipitasi juga memberikan indikasi visual yang konsisten dengan hasil AAS. Studi ini menegaskan bahwa lokasi Pakirum memiliki potensi eksplorasi tembaga yang layak dikembangkan lebih lanjut secara ilmiah dan ekonomis.

Identification of Copper (Cu) Content in Artisanal Gold Mining Rocks from Sumbawa Using Co-precipitation Method and Atomic Absorption Spectrophotometry

Abstract

This study aims to identify the copper (Cu) content in rocks from artisanal gold mining sites in Sumbawa Island, Indonesia, as a basis for evaluating the potential of secondary metal exploration. The urgency arises from the lack of systematic data on non-gold metals in traditional mining areas, despite their economic value and potential environmental risks. Rock samples were collected from Olat Pakirum, Upak, and Labaong, then analyzed using the co-precipitation method for sample preparation and Atomic Absorption Spectrophotometry (AAS) for Cu quantification. Results revealed that the Pakirum sample contained 1063.93 ppm Cu (approximately 1.06%), falling within the economically viable range. In contrast, samples from Upak and Labaong contained 86.54 ppm and 6.71 ppm respectively. Filtrate and residue colors from the co-precipitation process also visually supported the AAS findings. This study confirms that the Pakirum site holds a significant potential for copper exploration, warranting further scientific and economic development.

References

Aboulaich, A., Yaden, A., Elhalya, N., Tayoury, M., Aqil, M., Hdidou, L., … Alami, J. (2022). Synthesis and recyclability of sheet-like cobalt carbonate recovered from spent li-ion batteries using a simple hydrometallurgy process. Sustainability, 14(5), 2552. https://doi.org/10.3390/su14052552

Ahmad, S. (2023). Innovation and drivers of productivity: a global analysis of selected critical minerals. Commodities, 2(4), 417–432. https://doi.org/10.3390/commodities2040024

Aldan, F., Idrus, A., Takahashi, R., & Kaneko, G. (2022). High-sulfidation epithermal–porphyry transition in the Kumbokarno prospect, Trenggalek district, East Java, Indonesia: Constraints from mineralogy, fluid inclusion, and sulfur isotope studies. Resource Geology, 72(1). https://doi.org/10.1111/rge.12289

Almendral, C., & Tayo, L. (2023). Performance of electrocoagulation process for copper removal in simulated artisanal and small-scale mining wastewater. IOP Conference Series: Earth and Environmental Science, 1146(1), 012002. https://doi.org/10.1088/1755-1315/1146/1/012002

Benavente, O., Hernández, M., Melo, E., Núñez, D., Quezada, V., & Zepeda, Y. (2019). Copper dissolution from black copper ore under oxidizing and reducing conditions. Metals, 9(7), 799. https://doi.org/10.3390/met9070799

Blundy, J., Afanasyev, A., Tattitch, B., Sparks, S., Melnik, O., Utkin, I., … Rust, A. (2021). The economic potential of metalliferous sub-volcanic brines. Royal Society Open Science, 8(6), 202192. https://doi.org/10.1098/rsos.202192

Budlayan, M., Patricio, J., Lagare, J., Rosa, L., Arco, S., Alguno, A., … Capangpangan, R. (2021). Functionalized silver nanoparticle-decorated paper sensor for rapid colorimetric detection of copper ions in water. Functional Composites and Structures, 3(3), 035007. https://doi.org/10.1088/2631-6331/ac25e9

Burrows, D., Rennison, M., Burt, D., & Davies, R. (2020). The onto Cu–Au discovery, eastern Sumbawa, Indonesia: A large, Middle Pleistocene lithocap-hosted high-sulfidation covellite-pyrite porphyry deposit. Economic Geology, 115(7), 1385–1412. https://doi.org/10.5382/econgeo.4766

Cruz, C., Herrera-León, S., Calisaya-Azpilcueta, D., Salazar, R., Cisternas, L., & Kras?awski, A. (2022). Using waste brine from desalination plant as a source of industrial water in copper mining industry. Minerals, 12(9), 1162. https://doi.org/10.3390/min12091162

Cui, W., Mei, Y., Liu, S., & Zhang, X. (2023). Health risk assessment of heavy metal pollution and its sources in agricultural soils near Hongfeng Lake in the mining area of Guizhou Province, China. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1276925

Dey, N. (2021). Metal-ion-responsive chromogenic probe for rapid, on-location detection of foodborne bacterial pathogens in contaminated food items. ACS Applied Bio Materials, 4(9), 6893–6902. https://doi.org/10.1021/acsabm.1c00600

Drobe, M., Haubrich, F., Gajardo, M., & Marbler, H. (2021). Processing tests, adjusted cost models and the economies of reprocessing copper mine tailings in Chile. Metals, 11(1), 103. https://doi.org/10.3390/met11010103

Escobar-Segovia, K., Jiménez-Oyola, S., Garcés, D., Paz-Barzola, D., Navarrete, E., Romero-Crespo, P., … Salgado-Almeida, B. (2021). Heavy metals in rivers affected by mining activities in Ecuador: Pollution and human health implications. https://doi.org/10.2495/wrm210061

Esfanjani, L., Farhadyar, N., Shahbazi, H., & Fathi, F. (2023). ?-cyclodextrin modified nano ?-alumina synthesized by co-precipitation method for absorption properties improvement of nano alumina. https://doi.org/10.21203/rs.3.rs-3447602/v1

Faesal, A., Aminuddin, M., & Ubaidillah, A. (2022). Host rock petrology, hydrothermal alteration characteristics & ore mineralogy of porphyry copper–gold deposit, Brambang, Lombok, West Nusa Tenggara Indonesia. Materials Today: Proceedings, 66, 3071–3076. https://doi.org/10.1016/j.matpr.2022.07.373

Flores, V., Norambuena, B., & Leiva, C. (2020). Using artificial intelligence techniques to improve the prediction of copper recovery by leaching. Journal of Sensors, 2020, 1–12. https://doi.org/10.1155/2020/2454875

Fodoué, Y., Ismaila, A., Yannah, M., Wirmvem, M., & Mana, C. (2022). Heavy metal contamination and ecological risk assessment in soils of the Pawara gold mining area, eastern Cameroon. Earth, 3(3), 907–924. https://doi.org/10.3390/earth3030053

Godirilwe, L., Haga, K., Batnasan, A., Takasaki, Y., Ishiyama, D., Trifunovi?, V., … Shibayama, A. (2021). Copper recovery and reduction of environmental loading from mine tailings by high-pressure leaching and SX–EW process. Metals, 11(9), 1335. https://doi.org/10.3390/met11091335

Hammarstrom, J. (2022). Porphyry copper: Revisiting mineral resource assessment predictions for the Andes. Minerals, 12(7), 856. https://doi.org/10.3390/min12070856

Hsu, I., & Zimmer, H. (2023). A colorimetric investigation of copper(II) solutions. Journal of Emerging Investigators. https://doi.org/10.59720/22-284

Irenge, C., Bushenyula, P., Irenge, E., & Coppieters, Y. (2023). Participative epidemiology and prevention pathway of health risks associated with artisanal mines in Luhihi area, DR Congo. BMC Public Health, 23(1). https://doi.org/10.1186/s12889-023-15020-3

Jenkins, M., Phillips, M., & Xue, Z. (2023). Solvatochromism of cupric chloride and its conversion to copper oxide. Journal of Chemical Education, 100(12), 4772–4779. https://doi.org/10.1021/acs.jchemed.3c00493

Justel, F., Taboada, M., Flores, E., Galleguillos, H., & Graber, T. (2020). Thermodynamic model for the design of a process of production of copper sulfate pentahydrate from copper ores. ACS Omega, 5(45), 29073–29080. https://doi.org/10.1021/acsomega.0c03615

Kagambèga, N., Ouedraogo, M., & Sam, U. (2023). Assessment of water and stream sediment pollution related to artisanal mining in Alga, Burkina Faso, West Africa. International Journal of Environment and Climate Change, 13(11), 461–473. https://doi.org/10.9734/ijecc/2023/v13i113189

Kamariah, N., Xanthopoulos, P., Binnemans, K., & Spooren, J. (2023). Solvometallurgical process for the recovery of copper from chrysocolla in monoethanolamine. Industrial & Engineering Chemistry Research, 62(33), 12880–12890. https://doi.org/10.1021/acs.iecr.3c01834

Karaboduk, K. (2019). Electrochemical determination of ascorbic acid based on AgNPs/PVP-modified glassy carbon electrode. ChemistrySelect, 4(20), 6361–6369. https://doi.org/10.1002/slct.201901102

Katkova, M., Zabrodina, G., Rumyantcev, R., Zhigulin, G., Ketkov, S., Lyssenko, K., … ????????, ?. (2019). pH-responsive switching properties of a water-soluble metallamacrocyclic phenylalanine-hydroximate La(III)–Cu(II) complex: Insight into tuning protonation ligand states. European Journal of Inorganic Chemistry, 2019(39–40), 4328–4335. https://doi.org/10.1002/ejic.201900536

Kaur, M., Sahoo, S., & Kaur, H. (2020). New Schiff base as selective and sensitive detection of copper ions in aqueous solvent. ChemistrySelect, 5(47), 14857–14868. https://doi.org/10.1002/slct.202003880

Korniyenko, V., Malanchuk, Y., Khrystyuk, A., Kostrychenko, V., Shampikova, A., Nogaeva, K., … Kozhonov, A. (2021). Modeling the distribution of rock mass and native copper output by size classes during crushing. E3S Web of Conferences, 280, 01004. https://doi.org/10.1051/e3sconf/202128001004

Leys, C., Schwarz, A., Cloos, M., Widodo, S., Kyle, J., & Sirait, J. (2020). Chapter 29: Grasberg copper–gold–(molybdenum) deposit: Product of two overlapping porphyry systems (pp. 599–620). https://doi.org/10.5382/sp.23.29

Merlo, A., Kaczan, W., Léonard, G., & Wirth, H. (2021). Assessing the environmental pertinence of cobalt exploitation from slag in KGHM mines. Environ Sci Proc, 33. https://doi.org/10.3390/environsciproc2021009033

N’cho, O., Ouattara, I., Ouattara, Z., Yeo, S., & Kamagaté, B. (2023). Soil and environment quality in artisanal small-scale mining areas in western Côte d’Ivoire. World Journal of Advanced Research and Reviews, 20(3), 774–779. https://doi.org/10.30574/wjarr.2023.20.3.2420

Oliveira, J., Suarez, W., Santos, V., Silva, L., & Capitán-Vallvey, L. (2023). Using a cotton thread-based colorimetric sensor modified by carboxymethylcellulose and cuprizone with smartphone detection for quantification of copper. Analytical Methods, 15(42), 5683–5691. https://doi.org/10.1039/d3ay01541f

Oliveira, P., Colombo, M., Porto, L., Carvalho, G., & Petri, D. (2019). Evaluation of calcium alginate microparticles for copper preconcentration prior to FAAS measurements in fresh water. Brazilian Journal of Analytical Chemistry, 6(23). https://doi.org/10.30744/brjac.2179-3425.ar.139-2018

Oo, T. (2019). Approach to assessment of soil and water contamination by mining activities in Mandalay Region, Myanmar. International Journal of Geomate, 16(57). https://doi.org/10.21660/2019.57.8137

Park, S., & Choi, Y. (2020). Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8), 663. https://doi.org/10.3390/min10080663

Popkov, V., & Albadi, Y. (2021). The effect of co-precipitation temperature on the crystallite size and aggregation/agglomeration of GdFeO? nanoparticles. Nanosystems Physics Chemistry Mathematics, 12(2), 224–231. https://doi.org/10.17586/2220-8054-2021-12-2-224-231

Quiton, K., Huang, Y., & Lu, M. (2022). Recovery of cobalt and copper from single- and co-contaminated simulated electroplating wastewater via carbonate and hydroxide precipitation. Sustainable Environment Research, 32(1). https://doi.org/10.1186/s42834-022-00140-z

Raza’i, T., Nofrizal, N., Amrifo, V., Pardi, H., Putra, I., Febrianto, T., … Ilhamdy, A. (2022). Accumulation of essential (copper, iron, zinc) and non-essential (lead, cadmium) heavy metals in Caulerpa racemosa, sea water, and marine sediments of Bintan Island, Indonesia. F1000Research, 10, 699. https://doi.org/10.12688/f1000research.54445.2

Redwan, M., & Elhaddad, E. (2020). Assessment of seasonal variability and enrichment of toxic trace metals pollution in sediments of Damietta Branch, Nile River, Egypt. Water, 12(12), 3359. https://doi.org/10.3390/w12123359

Sirait, M., Saragih, K., & Gea, S. (2020). The fabrication of natural zeolite via co-precipitation method as Cu, Pb and Zn metal absorbent. Latvian Journal of Physics and Technical Sciences, 57(3), 40–47. https://doi.org/10.2478/lpts-2020-0014

Sidoruk, M. (2023). Pollution and potential ecological risk evaluation of heavy metals in the bottom sediments: A case study of eutrophic Bukwa?d Lake located in an agricultural catchment. International Journal of Environmental Research and Public Health, 20(3), 2387. https://doi.org/10.3390/ijerph20032387

Slassi, S., Aarjane, M., & Amine, A. (2021). A novel imidazole-derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu²? in methanol with mixed aqueous medium. Applied Organometallic Chemistry, 35(11). https://doi.org/10.1002/aoc.6408

Sulaksono, A., Watanabe, Y., Arribas, A., Echigo, T., Furqan, R., & Leys, C. (2021). Reduction of oxidized sulfur in the formation of the Grasberg porphyry copper–gold deposit, Papua, Indonesia. Mineralium Deposita, 56(6), 1027–1042. https://doi.org/10.1007/s00126-021-01040-9

Sylvain, A., Koné, T., Lassina, C., Kamagaté, M., & Lacina, C. (2020). Diagnostics of environmental risks and mapping of surface water sensitivity due to metal contamination from artisanal gold mining in Côte d’Ivoire: Case of Angovia, Kokumbo, Hiré and Agbaou. Journal of Geoscience and Environment Protection, 8(2), 47–64. https://doi.org/10.4236/gep.2020.82004

Tampushi, L., Onyari, J., & Muthama, N. (2021). A review of mining regulations and environmental sustainability of artisanal gold mining sector. Asian Journal of Environment & Ecology, 1–16. https://doi.org/10.9734/ajee/2021/v16i430253

Terrones-Saeta, J., Suárez-Macías, J., Castañón, A., & Corpas-Iglesias, F. (2021). Evaluation of copper leaching for subsequent recovery from the waste dumps of the Linares mining district and their use for construction materials. Metals, 11(8), 1328. https://doi.org/10.3390/met11081328

Tran, T., Moon, H., & Lee, M. (2022). Recovery of valuable metals from the hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries. Journal of Chemical Technology & Biotechnology, 97(5), 1247–1258. https://doi.org/10.1002/jctb.7019

Tudosie, M., Caragea, G., Popescu, D., Avram, O., ?erban, D., Smarandache, C., … Dasc?lu, A. (2021). Optimization of a GF AAS method for lead testing in blood and urine: A useful tool in acute abdominal pain management in emergency. Experimental and Therapeutic Medicine, 22(3). https://doi.org/10.3892/etm.2021.10417

Turabdzhanov, S., Nazirov, Z., Turaeva, D., & Rakhimova, L. (2019). Perspective wastewater treatment from Cu²? ions in the mining industry. E3S Web of Conferences, 105, 02025. https://doi.org/10.1051/e3sconf/201910502025

Uwizeyimana, J., Rwatangabo, D., Imanirafasha, E., Barayagwiza, V., & Hategekimana, F. (2022). The efficiency of mechanized mineral processing techniques to recover tin and tantalum ores: Case study: Nyamatete concession, Rwanda. Geoscience Engineering, 68(2), 195–207. https://doi.org/10.35180/gse-2022-0081

Verdiansyah, O., Idrus, A., Setijadji, L., Sutopo, B., & Sukadana, I. (2021). Mineralogy of hydrothermal breccia cement of Humpa Leu East porphyry copper–gold prospect, Sumbawa Island, Indonesia. E3S Web of Conferences, 325, 04008. https://doi.org/10.1051/e3sconf/202132504008

Wang, Z., Liu, Y., Wei, C., Liu, X., Yang, Z., Yang, L., … Li, Z. (2022). Spatial distribution, sources, and risk assessment of metal ions in sediments from industrial areas in the Kuye River Basin in Shenmu, China. https://doi.org/10.21203/rs.3.rs-2102984/v1

Xu, X., Zhang, X., Cao, C., Zheng, B., Deng, H., & Shuai, Q. (2020). Cu²?-selective naked-eye ‘off–on’ fluorescent probe with multisignals: Chromaticity, fluorescence, electrochemistry. Luminescence, 35(7), 1142–1150. https://doi.org/10.1002/bio.3827

????, ?., Halysh, V., Gomelya, M., Ivanchenko, A., & Benatov, D. (2021). Techno-economic feasibility for water purification from copper ions. Ecological Engineering & Environmental Technology, 22(3), 27–34. https://doi.org/10.12912/27197050/134869

Downloads

Published

2023-05-30

Issue

Section

Original Research Article

How to Cite

Nur, M., Ahzan, S., & Pangga, D. (2023). Identifikasi Kandungan Tembaga (Cu) pada Batuan Tambang Emas Tradisional di Sumbawa melalui Metode Kopresipitasi dan Spektrofotometri Serapan Atom. Multi Discere Journal, 2(1), 43-53. https://doi.org/10.36312/mj.v2i1.2741