Efektivitas Filter Pasir dalam Menyisihkan Kelimpahan Mikroplastik pada Air Baku Air Minum: Tinjauan Literatur

Authors

  • Edazka Sulthan Falah Universitas Singaperbangsa Karawang
  • Gina Lova Sari Universitas Singaperbangsa Karawang
  • Nadia Amanah Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.36312/ej.v6i2.2988

Keywords:

Filter Pasir, Mikroplastik, Air Minum

Abstract

Tinjauan literatur ini menganalisis efektivitas filter pasir dalam menurunkan kelimpahan mikroplastik pada air baku air minum. Peningkatan kebutuhan air minum dan adanya mikroplastik pada sumber seperti Depot Air Minum Isi Ulang (DAMIU) menyoroti urgensi pengolahan air yang efektif. Akumulasi mikroplastik dapat mempengaruhi sistem kekebalan tubuh dan organ manusia. Mekanisme utama penghilangan mikroplastik oleh filter pasir adalah filtrasi fisik (intersepsi, penjebakan, keterikatan), dengan adsorpsi turut berkontribusi. Filter pasir cepat (RSF) menunjukkan efisiensi tinggi, mencapai 98% untuk mikroplastik <10 µm dan lebih dari 90% untuk partikel lebih besar. Ukuran efektif (ES) media filter yang lebih kecil meningkatkan efisiensi, terutama untuk mikroplastik kecil. Faktor lain yang mempengaruhi kinerja meliputi karakteristik mikroplastik, kecepatan aliran, konsentrasi awal, panjang media, dan backwashing rutin untuk regenerasi situs aktif. Meskipun filter pasir efektif dan hemat biaya, tantangan analisis mikroplastik masih ada karena kurangnya metode standar dan variasi batas deteksi antar studi. Penelitian mendalam tentang Slow Sand Filtration (SSF) juga masih terbatas. Filter pasir sering menjadi bagian dari sistem pengolahan multi-tahap, melengkapi teknologi lain seperti membran untuk penghilangan mikroplastik secara komprehensif. Diperlukan standarisasi metode analisis dan optimalisasi desain filter, terutama SSF, untuk masa depan.

The Effectiveness of Sand Filters in Removing Microplastic Abundance in Raw Drinking Water: Literature Review

Abstract

This literature review analyzes the effectiveness of sand filters in reducing microplastic abundance in raw drinking water. The increasing demand for drinking water and the presence of microplastics in sources like Unbranded Refilled Drinking Water Depots (URDWD) highlight the urgency of effective water treatment. Microplastic accumulation can affect the human immune system and cause intestinal swelling. The primary mechanisms of microplastic removal by sand filters involve physical filtration, including interception, entrapment, and entanglement. Adsorption also contributes. Rapid Sand Filtration (RSF) demonstrates high efficiency, achieving up to 98% for microplastics smaller than 10 µm and over 90% for larger particles. A smaller effective size (ES) of the filter media enhances efficiency, particularly for smaller microplastics. Other factors influencing performance include microplastic characteristics, flow rate, initial microplastic concentration, bed media length, and regular backwashing for active site regeneration. While sand filters are effective and cost-efficient, challenges in microplastic analysis persist due to the lack of standardized methods and varying detection limits across studies. In-depth research on Slow Sand Filtration (SSF) effectiveness is also limited. Sand filters are often an integral part of multi-stage water treatment systems, complementing other technologies like membranes for comprehensive microplastic removal. Future research should focus on standardizing analytical methods and optimizing filter design, especially SSF.

Downloads

Download data is not yet available.

References

Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2023). Removal of microplastic from industrial wastewater in plastic recycling using sand filtration. Water, 15(5), 896.

Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2024). Microplastic elimination by hydrolysis acidification in municipal wastewater treatment plants. Water, 17(4), 574.

Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2025). Current and Emerging Strategies for Microplastic and Nanoplastic Removal from Environmental Matrices: A Comprehensive Review. Journal of Environmental Chemical Engineering, 5(2), 17.

Aydin, S., & Yilmaz, A. E. (2023). A review of microplastic removal from water and wastewater by membrane technologies. Water Science and Technology, 88(1), 199–216.

Clark, P. A., Arango Pinedo, C., Fadus, M., & Capuzzi, S. (2012). Slow-sand water filter: Design, implementation, accessibility and. Journal of Health Care for the Poor and Underserved, 23(4), 1633–1643.

Destiquama, D., Hasriyanti, H., & Arfan, A. (2019). Studi Kelayakan Air Tanah untuk Kebutuhan Air Minum di Kelurahan Romang Polong Kecamatan Somba Opu Kabupaten Gowa. Jurnal Environmental Science, 2(1).

Eckert, J., & Gremm, T. (2021). Microplastic Elimination by Sand Filtration in Municipal and Industrial Wastewater Treatment Plants. Water, 13(1), 33.

Farner, J. M. (2020). Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54(14), 8617–8626.

Galgani, F., & Hanke, G. (2017). Guidance on monitoring of marine litter in European seas. Joint Research Centre. https://pmc.ncbi.nlm.nih.gov/articles/PMC5226407/

Hilaris Publisher. (n.d.). Removal of Microplastics by Sand Filtration from Industrial Wastewater in Plastic Recycling. Retrieved from https://www.hilarispublisher.com/open-access/removal-of-microplastics-by-sand-filtration-from-industrial-wastewater-in-plastic-recycling-105027.html

Huang, Z., Hu, B., & Wang, H. (2023). Analytical methods for microplastics in the environment: a review. Environmental Chemistry Letters, 21(1), 383–401.

Just Plumbing AZ. (n.d.). Does Reverse Osmosis Remove Microplastics? New Research Shows 99.9% Filtration Rate. Retrieved from https://justplumbingaz.com/blog/does-reverse-osmosis-remove-microplastics-new-research-shows-99-9-filtration-rate/

Kawahara, K. (n.d.). Microplastic Automatic Preparation Device MAP-100. Shimadzu Corporation. https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/22119/an_01-00522-en.pdf

Kimbrough, K. L., & Safford, H. R. (2023). Microplastic Removal from Drinking Water Using Point-of-Use Devices. Water, 15(6), 1100.

Kusumawardani, S., & Larasati, A. (2020). Analisis konsumsi air putih terhadap konsentrasi. Jurnal Holistika, 4(2), 91–95.

Li, H., Wang, Y., Zhang, Y., & Li, Y. (2024a). Rapid sand filtration for <10 ?m-sized microplastic removal in tap water treatment: Efficiency and adsorption mechanisms. Science of The Total Environment, 912, 169074.

Li, J., Zhang, Y., & Li, H. (2022). Removing microplastics from aquatic environments: A critical review. Environmental Chemistry Letters, 21(1), 383–401.

Li, Y., Zhang, Y., Wang, Y., & Li, H. (2024b). Mass concentration and removal characteristics of microplastics and nanoplastics in a drinking water treatment plant. Environmental Science & Technology Water. https://pubs.acs.org/doi/10.1021/acsestwater.4c00222

Mila, W., Nabilah, S. L., & Puspikawati, S. I. (2020). Higiene dan Sanitasi Depot Air Minum Isi Ulang di Kecamatan Banyuwangi Kabupaten Banyuwangi Jawa Timur: Kajian Deskriptif. Jurnal Ilmu Kesehatan Masyarakat, 16(1), 7–15.

Mississippi State University Extension. (n.d.). Microplastics Sampling and Processing Guidebook. Retrieved from http://extension.msstate.edu/publications/microplastics-sampling-and-processing-guidebook

Napi, N. N. A. M., & Zaini, M. A. A. (2023). Column-based removal of high concentration microplastics in synthetic wastewater using granular activated carbon. Journal of Water Process Engineering, 56, 104526.

Peraturan Menteri Kesehatan Nomor 2 Tahun 2023 Tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 Tentang Kesehatan Lingkungan (2023). https://peraturan.bpk.go.id/Details/245563/per

Popa, A. M., & Popa, M. (2023). Microplastics: A Global Threat to the Environment and Food Safety. Journal of Environmental Protection and Ecology, 24(1), 1–12.

Sembiring, E., & Sinaga, S. (2021). Performance of rapid sand filter single media to remove microplastics. Water Supply, 21(5), 2273–2284.

Syarif, M., Daud, A., & Natsir, M. F. (2021). Identifikasi Keberadaan dan Bentuk Mikroplastik pada Air Minum Isi Ulang di Kelurahan Tamangapa Kota Makassar: Identification of the Existence and Form of Microplastic in Refilled Drinking Water in Tamangapa Village, Makassar City. Hasanuddin Journal of Public Health, 2(3), 346–354.

Wasser 3.0. (n.d.). New data on microplastic removal from wastewater. Retrieved from https://wasserdreinull.de/en/blog/new-data-on-microplastic-removal-from-wastewater/

Widianarko, Y. B., & Hantoro, I. (2018). Mikroplastik dalam Seafood dari Pantai Utara Jawa. Penerbit Universitas Katolik Soegijapranata.

Wulandari, M., Marpaung, K., Prasaningtyas, A., Yorika, R., Harfadli, M. M., & Zulfikar, A. (2024). Performance of Rapid Sand Filter Dual Media for Microplastic Removal in the Water: The Effect of Microplastic Size and Effective Size of Filter Media. Journal of Community Based Environmental Engineering and Management, 8(1), 103–110.

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Falah, E. S., Sari, G. L., & Amanah, N. (2025). Efektivitas Filter Pasir dalam Menyisihkan Kelimpahan Mikroplastik pada Air Baku Air Minum: Tinjauan Literatur. Empiricism Journal, 6(2), 799-812. https://doi.org/10.36312/ej.v6i2.2988