Efektivitas Filter Pasir dalam Menyisihkan Kelimpahan Mikroplastik pada Air Baku Air Minum: Tinjauan Literatur
DOI:
https://doi.org/10.36312/ej.v6i2.2988Keywords:
Filter Pasir, Mikroplastik, Air MinumAbstract
Tinjauan literatur ini menganalisis efektivitas filter pasir dalam menurunkan kelimpahan mikroplastik pada air baku air minum. Peningkatan kebutuhan air minum dan adanya mikroplastik pada sumber seperti Depot Air Minum Isi Ulang (DAMIU) menyoroti urgensi pengolahan air yang efektif. Akumulasi mikroplastik dapat mempengaruhi sistem kekebalan tubuh dan organ manusia. Mekanisme utama penghilangan mikroplastik oleh filter pasir adalah filtrasi fisik (intersepsi, penjebakan, keterikatan), dengan adsorpsi turut berkontribusi. Filter pasir cepat (RSF) menunjukkan efisiensi tinggi, mencapai 98% untuk mikroplastik <10 µm dan lebih dari 90% untuk partikel lebih besar. Ukuran efektif (ES) media filter yang lebih kecil meningkatkan efisiensi, terutama untuk mikroplastik kecil. Faktor lain yang mempengaruhi kinerja meliputi karakteristik mikroplastik, kecepatan aliran, konsentrasi awal, panjang media, dan backwashing rutin untuk regenerasi situs aktif. Meskipun filter pasir efektif dan hemat biaya, tantangan analisis mikroplastik masih ada karena kurangnya metode standar dan variasi batas deteksi antar studi. Penelitian mendalam tentang Slow Sand Filtration (SSF) juga masih terbatas. Filter pasir sering menjadi bagian dari sistem pengolahan multi-tahap, melengkapi teknologi lain seperti membran untuk penghilangan mikroplastik secara komprehensif. Diperlukan standarisasi metode analisis dan optimalisasi desain filter, terutama SSF, untuk masa depan.
The Effectiveness of Sand Filters in Removing Microplastic Abundance in Raw Drinking Water: Literature Review
Abstract
This literature review analyzes the effectiveness of sand filters in reducing microplastic abundance in raw drinking water. The increasing demand for drinking water and the presence of microplastics in sources like Unbranded Refilled Drinking Water Depots (URDWD) highlight the urgency of effective water treatment. Microplastic accumulation can affect the human immune system and cause intestinal swelling. The primary mechanisms of microplastic removal by sand filters involve physical filtration, including interception, entrapment, and entanglement. Adsorption also contributes. Rapid Sand Filtration (RSF) demonstrates high efficiency, achieving up to 98% for microplastics smaller than 10 µm and over 90% for larger particles. A smaller effective size (ES) of the filter media enhances efficiency, particularly for smaller microplastics. Other factors influencing performance include microplastic characteristics, flow rate, initial microplastic concentration, bed media length, and regular backwashing for active site regeneration. While sand filters are effective and cost-efficient, challenges in microplastic analysis persist due to the lack of standardized methods and varying detection limits across studies. In-depth research on Slow Sand Filtration (SSF) effectiveness is also limited. Sand filters are often an integral part of multi-stage water treatment systems, complementing other technologies like membranes for comprehensive microplastic removal. Future research should focus on standardizing analytical methods and optimizing filter design, especially SSF.
Downloads
References
Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2023). Removal of microplastic from industrial wastewater in plastic recycling using sand filtration. Water, 15(5), 896.
Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2024). Microplastic elimination by hydrolysis acidification in municipal wastewater treatment plants. Water, 17(4), 574.
Al-Ghouti, M. A., Al-Saad, K. A., & Al-Saad, K. M. (2025). Current and Emerging Strategies for Microplastic and Nanoplastic Removal from Environmental Matrices: A Comprehensive Review. Journal of Environmental Chemical Engineering, 5(2), 17.
Aydin, S., & Yilmaz, A. E. (2023). A review of microplastic removal from water and wastewater by membrane technologies. Water Science and Technology, 88(1), 199–216.
Clark, P. A., Arango Pinedo, C., Fadus, M., & Capuzzi, S. (2012). Slow-sand water filter: Design, implementation, accessibility and. Journal of Health Care for the Poor and Underserved, 23(4), 1633–1643.
Destiquama, D., Hasriyanti, H., & Arfan, A. (2019). Studi Kelayakan Air Tanah untuk Kebutuhan Air Minum di Kelurahan Romang Polong Kecamatan Somba Opu Kabupaten Gowa. Jurnal Environmental Science, 2(1).
Eckert, J., & Gremm, T. (2021). Microplastic Elimination by Sand Filtration in Municipal and Industrial Wastewater Treatment Plants. Water, 13(1), 33.
Farner, J. M. (2020). Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54(14), 8617–8626.
Galgani, F., & Hanke, G. (2017). Guidance on monitoring of marine litter in European seas. Joint Research Centre. https://pmc.ncbi.nlm.nih.gov/articles/PMC5226407/
Hilaris Publisher. (n.d.). Removal of Microplastics by Sand Filtration from Industrial Wastewater in Plastic Recycling. Retrieved from https://www.hilarispublisher.com/open-access/removal-of-microplastics-by-sand-filtration-from-industrial-wastewater-in-plastic-recycling-105027.html
Huang, Z., Hu, B., & Wang, H. (2023). Analytical methods for microplastics in the environment: a review. Environmental Chemistry Letters, 21(1), 383–401.
Just Plumbing AZ. (n.d.). Does Reverse Osmosis Remove Microplastics? New Research Shows 99.9% Filtration Rate. Retrieved from https://justplumbingaz.com/blog/does-reverse-osmosis-remove-microplastics-new-research-shows-99-9-filtration-rate/
Kawahara, K. (n.d.). Microplastic Automatic Preparation Device MAP-100. Shimadzu Corporation. https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/22119/an_01-00522-en.pdf
Kimbrough, K. L., & Safford, H. R. (2023). Microplastic Removal from Drinking Water Using Point-of-Use Devices. Water, 15(6), 1100.
Kusumawardani, S., & Larasati, A. (2020). Analisis konsumsi air putih terhadap konsentrasi. Jurnal Holistika, 4(2), 91–95.
Li, H., Wang, Y., Zhang, Y., & Li, Y. (2024a). Rapid sand filtration for <10 ?m-sized microplastic removal in tap water treatment: Efficiency and adsorption mechanisms. Science of The Total Environment, 912, 169074.
Li, J., Zhang, Y., & Li, H. (2022). Removing microplastics from aquatic environments: A critical review. Environmental Chemistry Letters, 21(1), 383–401.
Li, Y., Zhang, Y., Wang, Y., & Li, H. (2024b). Mass concentration and removal characteristics of microplastics and nanoplastics in a drinking water treatment plant. Environmental Science & Technology Water. https://pubs.acs.org/doi/10.1021/acsestwater.4c00222
Mila, W., Nabilah, S. L., & Puspikawati, S. I. (2020). Higiene dan Sanitasi Depot Air Minum Isi Ulang di Kecamatan Banyuwangi Kabupaten Banyuwangi Jawa Timur: Kajian Deskriptif. Jurnal Ilmu Kesehatan Masyarakat, 16(1), 7–15.
Mississippi State University Extension. (n.d.). Microplastics Sampling and Processing Guidebook. Retrieved from http://extension.msstate.edu/publications/microplastics-sampling-and-processing-guidebook
Napi, N. N. A. M., & Zaini, M. A. A. (2023). Column-based removal of high concentration microplastics in synthetic wastewater using granular activated carbon. Journal of Water Process Engineering, 56, 104526.
Peraturan Menteri Kesehatan Nomor 2 Tahun 2023 Tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 Tentang Kesehatan Lingkungan (2023). https://peraturan.bpk.go.id/Details/245563/per
Popa, A. M., & Popa, M. (2023). Microplastics: A Global Threat to the Environment and Food Safety. Journal of Environmental Protection and Ecology, 24(1), 1–12.
Sembiring, E., & Sinaga, S. (2021). Performance of rapid sand filter single media to remove microplastics. Water Supply, 21(5), 2273–2284.
Syarif, M., Daud, A., & Natsir, M. F. (2021). Identifikasi Keberadaan dan Bentuk Mikroplastik pada Air Minum Isi Ulang di Kelurahan Tamangapa Kota Makassar: Identification of the Existence and Form of Microplastic in Refilled Drinking Water in Tamangapa Village, Makassar City. Hasanuddin Journal of Public Health, 2(3), 346–354.
Wasser 3.0. (n.d.). New data on microplastic removal from wastewater. Retrieved from https://wasserdreinull.de/en/blog/new-data-on-microplastic-removal-from-wastewater/
Widianarko, Y. B., & Hantoro, I. (2018). Mikroplastik dalam Seafood dari Pantai Utara Jawa. Penerbit Universitas Katolik Soegijapranata.
Wulandari, M., Marpaung, K., Prasaningtyas, A., Yorika, R., Harfadli, M. M., & Zulfikar, A. (2024). Performance of Rapid Sand Filter Dual Media for Microplastic Removal in the Water: The Effect of Microplastic Size and Effective Size of Filter Media. Journal of Community Based Environmental Engineering and Management, 8(1), 103–110.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Edazka Sulthan Falah, Gina Lova Sari, Nadia Amanah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.