Analisis Sistem Instalasi Pengolahan Air Limbah (IPAL) di Industri Otomotif: Studi Literatur
DOI:
https://doi.org/10.36312/ej.v6i3.3271Keywords:
Sistem Instalasi Pengolahan, Air Limbah, Air EffluentAbstract
Setiap hari PT.X menghasilkan ratusan liter limbah cair dari proses produksi dan berpotensi mengancam kestabilan ekosistem, khususnya badan air di sekitar perusahaan. Limbah cair tersebut dikontaminasi oleh tumpahan spray booth yaitu campuran air dengan katalis TEDAL-33 dan debris headliner dari water jet berupa bahan polypropylene (PP), Low Density Polyethylene (LDPE), polyethylene terephthalate (PET), dan glass fiber. Penelitian ini mengisi celah studi sebelumnya yang belum mengkaji integrasi pengendalian mikroplastik dalam sistem IPAL industri otomotif dengan diadakan analisis alat dalam sistem Instalasi Pengolahan Air Limbah (IPAL) yang digunakan serta air effluent yang dikeluarkan dari sistem IPAL sesuai standar baku mutu Peraturan Menteri Lingkungan Hidup No.5 Tahun 2014 Lampiran XLVII. Penulis menggunakan metode analisis deskriptif untuk mengobservasi secara langsung proses pengolahan air limbah dan studi literatur untuk mengimplikasikan 5 data sekunder dengan 25 artikel riset yang relevan. Hal ini dilakukan agar penulis mampu mengidentifikasi kekurangan dan akar permasalahan lingkungan yang timbul dari air limbah. Dalam artikel ini ditemukan bahwa air effluent yang dihasilkan oleh sistem IPAL PT.X sesuai dengan Peraturan Menteri Lingkungan Hidup No.5 Tahun 2014 Lampiran XLVII, dengan 31 parameter memenuhi golongan I dan 2 parameter masuk golongan II, yaitu Chemical Oxygen Demand (COD) dan Biological Oxygen Demand (BOD). Namun ada hal teknis yang bisa dibenahi agar mampu mencapai pemanfaatan sistem IPAL yang lebih maksimal dan air limbah yang lebih bersih dari kontaminasi fisik, kimia dan mikrobiologis.
Analysis of Wastewater Treatment System Installation in the Automotive Industry: A Literature Review
Abstract
Every day PT. X generates hundreds of liters of liquid waste from the production process and has the potential to threaten the stability of the ecosystem, especially the water bodies around the company. The liquid waste was contaminated by a spray booth spill, which was a mixture of water with a TEDAL-33 catalyst and headliner debris from the water jet in the form of polypropylene (PP), Low Density Polyethylene (LDPE), polyethylene terephthalate (PET), and glass fiber. This study fills the gap in the previous study that has not examined the integration of microplastic control in the automotive industry WWTP system so that it is necessary through analyzing the equipment in the Wastewater Treatment Plant (WWTP) system used as well as the effluent water discharged from the WWTP system according to the quality standard standards of the Regulation of the Minister of Environment No.5 of 2014 Appendix XLVII. The author uses a descriptive analysis method to directly observe the wastewater treatment process and a literature study to implicate 5 secondary data with 25 relevant research articles. This is done so that the author is able to identify the shortcomings and roots of environmental problems arising from wastewater. In this article, it was found that the effluent water produced by the PT. X is in accordance with the Regulation of the Minister of Environment No.5 of 2014 Appendix XLVII, with 31 parameters meeting group I and 2 parameters in group II, namely Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). However, there are technical things that can be improved in order to be able to achieve a more optimal utilization of the WWTP system and wastewater that is cleaner from physical, chemical and microbiological contamination.
Downloads
References
Ali, A., Khalid, A., Razak, N., Maulana, N., Roslan, N., Razmi, R., … & Anuar, S. (2024). A review on the presence of microplastics in environmental matrices within southeast asia: elucidating risk information through an analysis of microplastic characteristics such as size, shape, and type. Water Emerging Contaminants & Nanoplastics, 3(2). https://doi.org/10.20517/wecn.2023.73
Ali, M. A. H. B. A. (2022). The Combination of a Previous Kitchen Waste Grease Trap for Fat, Oil, and Grease for Pre-Treatment. Journal of Advancement in Environmental Solution and Resource Recovery, 2(2), 37-43. https://doi.org/10.30880/jaesrr.2022.02.02.005
Alimi, O., Farner, J., Hernandez, L., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704-1724. https://doi.org/10.1021/acs.est.7b05559
Badawi, A. K., Salama, R. S., & Mostafa, M. M. (2023). Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments. RSC Advances, 13. 10.1039/d3ra01999c
Bakar, A. F. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FECL3) and aluminum sulfate (alum). The 2013 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium, 1571(1). https://doi.org/10.1063/1.4858708
Bayo, J., López?Castellanos, J., & Olmos, S. (2020). Abatement of microplastics from municipal effluents by two different wastewater treatment technologies.. https://doi.org/10.2495/wp200021
Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.
Cristaldi, A., Fiore, M., Zuccarello, P., Conti, G., Grasso, A., Nicolosi, I., … & Ferrante, M. (2020). Efficiency of wastewater treatment plants (wwtps) for microplastic removal: a systematic review. International Journal of Environmental Research and Public Health, 17(21), 8014. https://doi.org/10.3390/ijerph17218014
De?irmenci, Z. (2024). Selecting the Optimum Amount of Recycled Polypropylene Nonwoven Waste in Spunbond Production for Sustainability. Eski?ehir Technical University Journal of Science And Technology A- Applied Sciences And Engineering, 25(4). 10.18038/estubtda.1432783
Fazli, N., Mutamim, N., & Ali, M. (2018). Microbial fuel cell (mfc) in treating spent caustic wastewater. Journal of Chemical Engineering and Industrial Biotechnology, 3(1), 17-25. https://doi.org/10.15282/jceib.v3i1.3876
Funck, M., Al-Azzawi, M. S.M., Yilldirim, A., & Knoop, O. (2021). Release of microplastic particles to the aquatic environment via wastewater treatment plants: The impact of sand filters as tertiary treatment. Chemical Engineering Journal, 426. https://doi.org/10.1016/j.cej.2021.130933
Ghanad, A. (2023). An Overview of Quantitative Research Methods. International Journal of Multidisciplinary Research and Analysis, 6(8), 10.
Gu, Y. (2023). Optimization and control strategies of aeration in WWTPs: A review. Journal of Cleaner Production, 418. https://doi.org/ 10.1016/j.jclepro.2023.138008
Hale, R., King, A., Ramirez, J., Guardia, M., & Nidel, C. (2022). Durable plastic goods: a source of microplastics and chemical additives in the built and natural environments. Environmental Science & Technology Letters, 9(10), 798-807. https://doi.org/10.1021/acs.estlett.2c00417
Indonesia. (2014). Permen LH No. 5 Tahun 2014. Kementerian Koordinator Maritim & Investasi.Retrieved July 24, 2025, from https://jdih.maritim.go.id/en/peraturan-menteri-negara-lingkungan-hidup-no-5-tahun-2014
Indonesia. (2023). Permenkes No. 2 Tahun 2023. Kementerian Kesehatan. Retrieved July 24, 2025, from https://peraturan.bpk.go.id/Details/245563/permenkes-no-2-tahun-2023
Jabri, H., Das, P., Khan, S., Thaher, M., & AbdulQuadir, M. (2020). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water, 13(1), 27. https://doi.org/10.3390/w13010027
Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A., & Schaeffer, S. (2022). Activities of microplastics (mps) in agricultural soil: a review of mps pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70(14), 4182-4201. https://doi.org/10.1021/acs.jafc.1c07849
Khoironi, A. (2024). The Influence of Polypropylene Non-woven Plastic Waste on Alfisol Soil Quality. IOP Conference Series: Earth and Environmental Science, 1414.10.1088/1755-1315/1414/1/012037
Koutnik, V., Alkidim, S., Leonard, J., Deprima, F., Cao, S., Hoek, E., … & Mohanty, S. (2021). Unaccounted microplastics in wastewater sludge: where do they go?. Acs Es&t Water, 1(5), 1086-1097. https://doi.org/10.1021/acsestwater.0c00267
Kumar Das, C. (Ed.). (2015). Thermoplastic Elastomers: Synthesis and Applications. Intech Open.
Kumar, S. S. (2024). Assessment of Life Cycle and Environmental Impact Hotspots Associated with the Construction and Disposal of Fiberglass Reinforced Plastic Fishing (FRP) Boats in the Small-Scale Fishing Sector of India: LCA of small-scale FRP fishing boats.Fishery Technology, 61(4). 10.56093/ft.v61i4.153466
Kwon, H., Hidayaturrahman, H., Peera, S., & Lee, T. (2022). Elimination of microplastics at different stages in wastewater treatment plants. Water, 14(15), 2404. https://doi.org/10.3390/w14152404
Lasaki, B. A., Maurer, P., Maurer, Harald Schonberger, P., & Alvarez, E. P. (2023). Empowering municipal wastewater treatment: Enhancing particulate organic carbon removal via chemical advanced primary treatment. Environmental Technology & Innovation, 32. https://doi.org/10.1016/j.eti.2023.103436
Lestari, P. (2025). Spatial distribution of microplastic pollution and its relation to pollution index-based water quality status in Progo River, Indonesia. Emerging Contaminants, 11(3). https://doi.org/ 10.1016/j.emcon.2025.100510
M R A A, C., Kasmuri, N., Ahmad, R., Santiago, R., & Ramasamy, S. (2021). Comparison between activated carbon and sand filtration method for water quality enhancement: A case study. International Conference on Civil and Environmental Engineering, 646.10.1088/1755-1315/646/1/012050
Mailler, R. (2024). Mastering granular activated carbon filtration to remove organic micropollutants, antibiotic resistance and metals for municipal wastewater reuse. Science of the Total Environment, 952. https://doi.org/10.1016/j.scitotenv.2024.175918
Mao, X., Xu, Y., Cheng, Z., Yang, Y., Guan, Z., Jiang, L., … & Tang, K. (2022). The impact of microplastic pollution on ecological environment: a review. Frontiers in Bioscience-Landmark, 27(2). https://doi.org/10.31083/j.fbl2702046
Michielssen, M., Michielssen, E., Ni, J., & Duhaime, M. (2016). Fate of microplastics and other small anthropogenic litter (sal) in wastewater treatment plants depends on unit processes employed. Environmental Science Water Research & Technology, 2(6), 1064-1073. https://doi.org/10.1039/c6ew00207b
Miguel, J. (2023). Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustainability, 15(14), 10940. https://doi.org/10.3390/su151410940
Mortula, M. M. (2021). Leachability of microplastic from different plastic materials. Journal of Environmental Management, 294. https://doi.org/10.1016/j.jenvman.2021.112995
Muhardi, J., Nurhadi, N., Widianto, M., Pantogomo, A., Faryzahri, D., Rizal, F. (2022). Design Innovation of Grease Trap for Wastewater Treatment Arduino-Based. Proceedings of the 2022 Annual Technology, Applied Science and Engineering Conference (ATASEC 2022) Vol. 219. Atlantis Press International BV. doi.org/10.2991/978-94-6463-106-7_7
Nguyen, N. T. (2024). A comprehensive review of aeration and wastewater treatment. Aquaculture, 591. https://doi.org/10.1016/j.aquaculture.2024.741113
Nor, A., Mutaqqin, I., & Trianiza, I. (2020). Optimalisasi Dosis Koagulan dan Peningkatan Kinerja Pac (Poly Aluminium Klorida) Dengan Penambahan Kaustik Soda Dalam Proses Pengolahan Air Bersih di PDAM Bandarmasih Kota Banjarmasin Menggunakan Metode Jar Test. Jurnal JIEOM. 2620-8184
Park, H., Oh, M., Kim, P., Kim, G., Jeong, D., Ju, B., … & Kwon, J. (2020). National reconnaissance survey of microplastics in municipal wastewater treatment plants in korea. Environmental Science & Technology, 54(3), 1503-1512. https://doi.org/10.1021/acs.est.9b04929
Peng, J., Wang, J., & Cai, L. (2017). Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, 13(3), 476-482. https://doi.org/10.1002/ieam.1912
Raksaman, S. (2024). Effect of spunbond nonwoven microplastics on dye wastewater treatment via hydrogen peroxide–based catalyst–assisted advanced oxidation processes. Environmental Advances, 17. https://doi.org/10.1016/j.envadv.2024.100567
Rashid, M. (2023). Microplastic impact: a concise overview of pollution and effects.. https://doi.org/10.20944/preprints202312.1612.v1
Sa’diyah, A. (2020). Kajian Fragmentasi Low Density Polyethylene Akibat Radiasi Sinar Ultraviolet dan Kecepatan Aliran Air. Jurnal Teknik ITS, 9(2).
Sabrina, A. (2021). Analisis Penggunaan Media Audio Visual pada Pembelajaran Ilmu Pengetahuan Sosial Untuk Meningkatkan Hasil Belajar Siswa di Kelas IV Sekolah Dasar (Studi Literatur).
Saputri, I., Fatimatuzzahra, & Lestari, Y. (2023). Analisa Kadar COD (Chemical Oxygen Demand) Pada Limbah Cair Disekitar Kawasan Penambangan Batubara Kabupaten Bengkulu Utara. Organisms, 3(2).
Sari, G., Kasasiah, A., Utami, M., & Trihadiningrum, Y. (2021). Microplastics contamination in the aquatic environment of indonesia: a comprehensive review. Journal of Ecological Engineering, 22(10), 127-140. https://doi.org/10.12911/22998993/142118
Shmeis, R. (2018). Water Chemistry and Microbiology. Comprehensive Analytical Chemistry, 81. https://doi.org/ 10.1016/bs.coac.2018.02.001
Svahn, O., & Borg, S. (2024). Assessment of full-scale 4th treatment step for micro pollutant removal in Sweden: Sand and GAC filter combo. Science of the Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167424
Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005
Tang, S. (2025). Nonwoven Fabrics: The Giant of Micro(nano)plastic Pollution Hidden in the Corners of Life. Environmental Science & Technology, 59(23). https://doi.org/10.1021/acs.est.5c04448
Tembo, M. and Mwanza, B. (2024). An assessment of the factors causing food waste along the vegetable supply chain at soweto market in lusaka. AJOCS, 5(4), 221-232. https://doi.org/10.59413/ajocs/v5.i.4.4
Tihomirova, K. (2019). Management of wastewater from landfill of inorganic fiberglass. Agronomy Research, 17(1). https://doi.org/10.15159/AR.19.016
Wang, J., Guo, X., & Xue, J. (2021). Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environmental Science & Technology. https://doi.org/10.1021/acs.est.1c04466
Wicaksono, P., Hikmah, Y., & Ilmiawani, R. (2023). Productivity and global value chains: a tale from the indonesian automobile sector. Economies, 11(10), 262. https://doi.org/10.3390/economies11100262
Widyastuti, S., Abidin, A., Hikmaturrohmi, H., Ilhami, B., Kurniawan, N., Jupri, A., … & Prasedya, E. (2023). Microplastic contamination in different marine species of bintaro fish market, indonesia. Sustainability, 15(12), 9836. https://doi.org/10.3390/su15129836
World Health Organization. (2022). Guidelines for Drinking-water Quality: Fourth Edition Incorporating the First and Second Addenda. World Health Organization
Xie, Z. (2024). Progress of dye wastewater treatment methods. wjese. https://doi.org/10.57237/j.wjese.2024.02.002
Xu, Y., Chan, F., He, J., Johnson, M., Gibbins, C., Kay, P., … & Zhu, Y. (2020). A critical review of microplastic pollution in urban freshwater environments and legislative progress in china: recommendations and insights. Critical Reviews in Environmental Science and Technology, 51(22), 2637-2680. https://doi.org/10.1080/10643389.2020.1801308
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Wira Satya Nugraha Wicaksono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.