Analisis Sistem Instalasi Pengolahan Air Limbah (IPAL) di Industri Otomotif: Studi Literatur

Authors

  • Wira Satya Nugraha Wicaksono Universitas Airlangga

DOI:

https://doi.org/10.36312/ej.v6i3.3271

Keywords:

Sistem Instalasi Pengolahan, Air Limbah, Air Effluent

Abstract

Setiap hari PT.X menghasilkan ratusan liter limbah cair dari proses produksi dan berpotensi mengancam kestabilan ekosistem, khususnya badan air di sekitar perusahaan. Limbah cair tersebut dikontaminasi oleh tumpahan spray booth yaitu campuran air dengan katalis TEDAL-33 dan debris headliner dari water jet berupa bahan polypropylene (PP), Low Density Polyethylene (LDPE), polyethylene terephthalate (PET), dan glass fiber. Penelitian ini mengisi celah studi sebelumnya yang belum mengkaji integrasi pengendalian mikroplastik dalam sistem IPAL industri otomotif dengan diadakan analisis alat dalam sistem Instalasi Pengolahan Air Limbah (IPAL) yang digunakan serta air effluent yang dikeluarkan dari sistem IPAL sesuai standar baku mutu Peraturan Menteri Lingkungan Hidup No.5 Tahun 2014 Lampiran XLVII. Penulis menggunakan metode analisis deskriptif untuk mengobservasi secara langsung proses pengolahan air limbah dan studi literatur untuk mengimplikasikan 5 data sekunder dengan 25 artikel riset yang relevan. Hal ini dilakukan agar penulis mampu mengidentifikasi kekurangan dan akar permasalahan lingkungan yang timbul dari air limbah. Dalam artikel ini ditemukan bahwa air effluent yang dihasilkan oleh sistem IPAL PT.X sesuai dengan Peraturan Menteri Lingkungan Hidup No.5 Tahun 2014 Lampiran XLVII, dengan 31 parameter memenuhi golongan I dan 2  parameter masuk golongan II, yaitu Chemical Oxygen Demand (COD) dan Biological Oxygen Demand (BOD). Namun ada hal teknis yang bisa dibenahi agar mampu mencapai pemanfaatan sistem IPAL yang lebih maksimal dan air limbah yang lebih bersih dari kontaminasi fisik, kimia dan mikrobiologis.

Analysis of Wastewater Treatment System Installation in the Automotive Industry: A Literature Review

Abstract

Every day PT. X generates hundreds of liters of liquid waste from the production process and has the potential to threaten the stability of the ecosystem, especially the water bodies around the company. The liquid waste was contaminated by a spray booth spill, which was a mixture of water with a TEDAL-33 catalyst and headliner debris from the water jet in the form of polypropylene (PP), Low Density Polyethylene (LDPE), polyethylene terephthalate (PET), and glass fiber. This study fills the gap in the previous study that has not examined the integration of microplastic control in the automotive industry WWTP system so that it is necessary through analyzing the equipment in the Wastewater Treatment Plant (WWTP) system used as well as the effluent water discharged from the WWTP system according to the quality standard standards of the Regulation of the Minister of Environment No.5 of 2014 Appendix XLVII. The author uses a descriptive analysis method to directly observe the wastewater treatment process and a literature study to implicate 5 secondary data with 25 relevant research articles. This is done so that the author is able to identify the shortcomings and roots of environmental problems arising from wastewater. In this article, it was found that the effluent water produced by the PT. X is in accordance with the Regulation of the Minister of Environment No.5 of 2014 Appendix XLVII, with 31 parameters meeting group I and 2 parameters in group II, namely Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). However, there are technical things that can be improved in order to be able to achieve a more optimal utilization of the WWTP system and wastewater that is cleaner from physical, chemical and microbiological contamination.

Downloads

Download data is not yet available.

References

Ali, A., Khalid, A., Razak, N., Maulana, N., Roslan, N., Razmi, R., … & Anuar, S. (2024). A review on the presence of microplastics in environmental matrices within southeast asia: elucidating risk information through an analysis of microplastic characteristics such as size, shape, and type. Water Emerging Contaminants & Nanoplastics, 3(2). https://doi.org/10.20517/wecn.2023.73

Ali, M. A. H. B. A. (2022). The Combination of a Previous Kitchen Waste Grease Trap for Fat, Oil, and Grease for Pre-Treatment. Journal of Advancement in Environmental Solution and Resource Recovery, 2(2), 37-43. https://doi.org/10.30880/jaesrr.2022.02.02.005

Alimi, O., Farner, J., Hernandez, L., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704-1724. https://doi.org/10.1021/acs.est.7b05559

Badawi, A. K., Salama, R. S., & Mostafa, M. M. (2023). Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments. RSC Advances, 13. 10.1039/d3ra01999c

Bakar, A. F. A. (2013). Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FECL3) and aluminum sulfate (alum). The 2013 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium, 1571(1). https://doi.org/10.1063/1.4858708

Bayo, J., López?Castellanos, J., & Olmos, S. (2020). Abatement of microplastics from municipal effluents by two different wastewater treatment technologies.. https://doi.org/10.2495/wp200021

Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.

Cristaldi, A., Fiore, M., Zuccarello, P., Conti, G., Grasso, A., Nicolosi, I., … & Ferrante, M. (2020). Efficiency of wastewater treatment plants (wwtps) for microplastic removal: a systematic review. International Journal of Environmental Research and Public Health, 17(21), 8014. https://doi.org/10.3390/ijerph17218014

De?irmenci, Z. (2024). Selecting the Optimum Amount of Recycled Polypropylene Nonwoven Waste in Spunbond Production for Sustainability. Eski?ehir Technical University Journal of Science And Technology A- Applied Sciences And Engineering, 25(4). 10.18038/estubtda.1432783

Fazli, N., Mutamim, N., & Ali, M. (2018). Microbial fuel cell (mfc) in treating spent caustic wastewater. Journal of Chemical Engineering and Industrial Biotechnology, 3(1), 17-25. https://doi.org/10.15282/jceib.v3i1.3876

Funck, M., Al-Azzawi, M. S.M., Yilldirim, A., & Knoop, O. (2021). Release of microplastic particles to the aquatic environment via wastewater treatment plants: The impact of sand filters as tertiary treatment. Chemical Engineering Journal, 426. https://doi.org/10.1016/j.cej.2021.130933

Ghanad, A. (2023). An Overview of Quantitative Research Methods. International Journal of Multidisciplinary Research and Analysis, 6(8), 10.

Gu, Y. (2023). Optimization and control strategies of aeration in WWTPs: A review. Journal of Cleaner Production, 418. https://doi.org/ 10.1016/j.jclepro.2023.138008

Hale, R., King, A., Ramirez, J., Guardia, M., & Nidel, C. (2022). Durable plastic goods: a source of microplastics and chemical additives in the built and natural environments. Environmental Science & Technology Letters, 9(10), 798-807. https://doi.org/10.1021/acs.estlett.2c00417

Indonesia. (2014). Permen LH No. 5 Tahun 2014. Kementerian Koordinator Maritim & Investasi.Retrieved July 24, 2025, from https://jdih.maritim.go.id/en/peraturan-menteri-negara-lingkungan-hidup-no-5-tahun-2014

Indonesia. (2023). Permenkes No. 2 Tahun 2023. Kementerian Kesehatan. Retrieved July 24, 2025, from https://peraturan.bpk.go.id/Details/245563/permenkes-no-2-tahun-2023

Jabri, H., Das, P., Khan, S., Thaher, M., & AbdulQuadir, M. (2020). Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water, 13(1), 27. https://doi.org/10.3390/w13010027

Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A., & Schaeffer, S. (2022). Activities of microplastics (mps) in agricultural soil: a review of mps pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70(14), 4182-4201. https://doi.org/10.1021/acs.jafc.1c07849

Khoironi, A. (2024). The Influence of Polypropylene Non-woven Plastic Waste on Alfisol Soil Quality. IOP Conference Series: Earth and Environmental Science, 1414.10.1088/1755-1315/1414/1/012037

Koutnik, V., Alkidim, S., Leonard, J., Deprima, F., Cao, S., Hoek, E., … & Mohanty, S. (2021). Unaccounted microplastics in wastewater sludge: where do they go?. Acs Es&t Water, 1(5), 1086-1097. https://doi.org/10.1021/acsestwater.0c00267

Kumar Das, C. (Ed.). (2015). Thermoplastic Elastomers: Synthesis and Applications. Intech Open.

Kumar, S. S. (2024). Assessment of Life Cycle and Environmental Impact Hotspots Associated with the Construction and Disposal of Fiberglass Reinforced Plastic Fishing (FRP) Boats in the Small-Scale Fishing Sector of India: LCA of small-scale FRP fishing boats.Fishery Technology, 61(4). 10.56093/ft.v61i4.153466

Kwon, H., Hidayaturrahman, H., Peera, S., & Lee, T. (2022). Elimination of microplastics at different stages in wastewater treatment plants. Water, 14(15), 2404. https://doi.org/10.3390/w14152404

Lasaki, B. A., Maurer, P., Maurer, Harald Schonberger, P., & Alvarez, E. P. (2023). Empowering municipal wastewater treatment: Enhancing particulate organic carbon removal via chemical advanced primary treatment. Environmental Technology & Innovation, 32. https://doi.org/10.1016/j.eti.2023.103436

Lestari, P. (2025). Spatial distribution of microplastic pollution and its relation to pollution index-based water quality status in Progo River, Indonesia. Emerging Contaminants, 11(3). https://doi.org/ 10.1016/j.emcon.2025.100510

M R A A, C., Kasmuri, N., Ahmad, R., Santiago, R., & Ramasamy, S. (2021). Comparison between activated carbon and sand filtration method for water quality enhancement: A case study. International Conference on Civil and Environmental Engineering, 646.10.1088/1755-1315/646/1/012050

Mailler, R. (2024). Mastering granular activated carbon filtration to remove organic micropollutants, antibiotic resistance and metals for municipal wastewater reuse. Science of the Total Environment, 952. https://doi.org/10.1016/j.scitotenv.2024.175918

Mao, X., Xu, Y., Cheng, Z., Yang, Y., Guan, Z., Jiang, L., … & Tang, K. (2022). The impact of microplastic pollution on ecological environment: a review. Frontiers in Bioscience-Landmark, 27(2). https://doi.org/10.31083/j.fbl2702046

Michielssen, M., Michielssen, E., Ni, J., & Duhaime, M. (2016). Fate of microplastics and other small anthropogenic litter (sal) in wastewater treatment plants depends on unit processes employed. Environmental Science Water Research & Technology, 2(6), 1064-1073. https://doi.org/10.1039/c6ew00207b

Miguel, J. (2023). Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustainability, 15(14), 10940. https://doi.org/10.3390/su151410940

Mortula, M. M. (2021). Leachability of microplastic from different plastic materials. Journal of Environmental Management, 294. https://doi.org/10.1016/j.jenvman.2021.112995

Muhardi, J., Nurhadi, N., Widianto, M., Pantogomo, A., Faryzahri, D., Rizal, F. (2022). Design Innovation of Grease Trap for Wastewater Treatment Arduino-Based. Proceedings of the 2022 Annual Technology, Applied Science and Engineering Conference (ATASEC 2022) Vol. 219. Atlantis Press International BV. doi.org/10.2991/978-94-6463-106-7_7

Nguyen, N. T. (2024). A comprehensive review of aeration and wastewater treatment. Aquaculture, 591. https://doi.org/10.1016/j.aquaculture.2024.741113

Nor, A., Mutaqqin, I., & Trianiza, I. (2020). Optimalisasi Dosis Koagulan dan Peningkatan Kinerja Pac (Poly Aluminium Klorida) Dengan Penambahan Kaustik Soda Dalam Proses Pengolahan Air Bersih di PDAM Bandarmasih Kota Banjarmasin Menggunakan Metode Jar Test. Jurnal JIEOM. 2620-8184

Park, H., Oh, M., Kim, P., Kim, G., Jeong, D., Ju, B., … & Kwon, J. (2020). National reconnaissance survey of microplastics in municipal wastewater treatment plants in korea. Environmental Science & Technology, 54(3), 1503-1512. https://doi.org/10.1021/acs.est.9b04929

Peng, J., Wang, J., & Cai, L. (2017). Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integrated Environmental Assessment and Management, 13(3), 476-482. https://doi.org/10.1002/ieam.1912

Raksaman, S. (2024). Effect of spunbond nonwoven microplastics on dye wastewater treatment via hydrogen peroxide–based catalyst–assisted advanced oxidation processes. Environmental Advances, 17. https://doi.org/10.1016/j.envadv.2024.100567

Rashid, M. (2023). Microplastic impact: a concise overview of pollution and effects.. https://doi.org/10.20944/preprints202312.1612.v1

Sa’diyah, A. (2020). Kajian Fragmentasi Low Density Polyethylene Akibat Radiasi Sinar Ultraviolet dan Kecepatan Aliran Air. Jurnal Teknik ITS, 9(2).

Sabrina, A. (2021). Analisis Penggunaan Media Audio Visual pada Pembelajaran Ilmu Pengetahuan Sosial Untuk Meningkatkan Hasil Belajar Siswa di Kelas IV Sekolah Dasar (Studi Literatur).

Saputri, I., Fatimatuzzahra, & Lestari, Y. (2023). Analisa Kadar COD (Chemical Oxygen Demand) Pada Limbah Cair Disekitar Kawasan Penambangan Batubara Kabupaten Bengkulu Utara. Organisms, 3(2).

Sari, G., Kasasiah, A., Utami, M., & Trihadiningrum, Y. (2021). Microplastics contamination in the aquatic environment of indonesia: a comprehensive review. Journal of Ecological Engineering, 22(10), 127-140. https://doi.org/10.12911/22998993/142118

Shmeis, R. (2018). Water Chemistry and Microbiology. Comprehensive Analytical Chemistry, 81. https://doi.org/ 10.1016/bs.coac.2018.02.001

Svahn, O., & Borg, S. (2024). Assessment of full-scale 4th treatment step for micro pollutant removal in Sweden: Sand and GAC filter combo. Science of the Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167424

Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005

Tang, S. (2025). Nonwoven Fabrics: The Giant of Micro(nano)plastic Pollution Hidden in the Corners of Life. Environmental Science & Technology, 59(23). https://doi.org/10.1021/acs.est.5c04448

Tembo, M. and Mwanza, B. (2024). An assessment of the factors causing food waste along the vegetable supply chain at soweto market in lusaka. AJOCS, 5(4), 221-232. https://doi.org/10.59413/ajocs/v5.i.4.4

Tihomirova, K. (2019). Management of wastewater from landfill of inorganic fiberglass. Agronomy Research, 17(1). https://doi.org/10.15159/AR.19.016

Wang, J., Guo, X., & Xue, J. (2021). Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environmental Science & Technology. https://doi.org/10.1021/acs.est.1c04466

Wicaksono, P., Hikmah, Y., & Ilmiawani, R. (2023). Productivity and global value chains: a tale from the indonesian automobile sector. Economies, 11(10), 262. https://doi.org/10.3390/economies11100262

Widyastuti, S., Abidin, A., Hikmaturrohmi, H., Ilhami, B., Kurniawan, N., Jupri, A., … & Prasedya, E. (2023). Microplastic contamination in different marine species of bintaro fish market, indonesia. Sustainability, 15(12), 9836. https://doi.org/10.3390/su15129836

World Health Organization. (2022). Guidelines for Drinking-water Quality: Fourth Edition Incorporating the First and Second Addenda. World Health Organization

Xie, Z. (2024). Progress of dye wastewater treatment methods. wjese. https://doi.org/10.57237/j.wjese.2024.02.002

Xu, Y., Chan, F., He, J., Johnson, M., Gibbins, C., Kay, P., … & Zhu, Y. (2020). A critical review of microplastic pollution in urban freshwater environments and legislative progress in china: recommendations and insights. Critical Reviews in Environmental Science and Technology, 51(22), 2637-2680. https://doi.org/10.1080/10643389.2020.1801308

Downloads

Published

2025-09-25

Issue

Section

Articles

How to Cite

Wicaksono, W. S. N. (2025). Analisis Sistem Instalasi Pengolahan Air Limbah (IPAL) di Industri Otomotif: Studi Literatur. Empiricism Journal, 6(3), 1010-1022. https://doi.org/10.36312/ej.v6i3.3271