Model Pembelajaran Inquiry Terbimbing Terintegrasi Laboratorium Virtual untuk Meningkatkan Pemahaman Konsep dan Keterampilan Metakognitif Siswa
DOI:
https://doi.org/10.36312/ej.v2i2.594Keywords:
Inquiry Learning Model, Virtual Laboratory, Concept Understanding, Metacognitive Skills, Pemahaman Konsep, Keterampilan Metakognitif, MetakognisiAbstract
Penelitian ini bertujuan untuk mengetahui efektivitas model pembelajaran inquiry terintegrasi laboratorium virtual terhadap pemahaman konsep dan keterampilan metakognitif siswa. Quasi eksperimen dengan nonequivalent control group design digunakan dalam penelitian ini. Sampel penelitian ini adalah 56 siswa yang terbagi ke dalam 2 (dua) kelas parallel yang dipilih menggunakan cluster random sampling technique. Instrumen yang digunakan berupa tes pemahaman konsep dan instrumen lembar penilaian (LP) keterampilan metakognitif yangtelah dinyatakan valid dan reliabel. Data penelitian dianalisis secara deskriptif menggunakan persamaan n-gain dan statistic dengan bantuan software IBM SPSS 23 Version. Hasil penelitian menunjukkan bahwa pemahaman konsep siswa pada kelompok eksperimen (mean= 79,19; n-gain= 0,76 dengan kategori tinggi) lebih baik dari kelompok kontrol (mean= 43,08; n-gain= 0,36 dengan kategori sedang) dan berbeda secara signifikan (p < 0.05). Keterampilan metakognitif siswa menunjukkan hal serupa, kelompok eksperimen (pertemuan I= 54,69 (pertemuan II= 67,86; pertemuan III= 79,24) ditemukan lebih baik dari kelompok control (pertemuan I= 46,09; pertemuan II= 53,01; dan pertemuan III= 55,13). Hasil penelitian menunjukkan model pembelajaran inquiry terbimbing terintegrasi laboratorium virtual efektif dalam meningkatkan pemahaman konsep dan keterampilan metakognitif siswa dalam pembelajaran kimia materi larutan penyangga.
Virtual Laboratory Integrated Guided Inquiry Learning Model to Improve Students' Concept Understanding and Metacognitive Skills
Abstract
This study aims to determine the effectiveness of the virtual laboratory integrated guided-inquiry learning model on students' concept understanding and metacognitive skills. Quasi experimental with nonequivalent control group design was used in this study. The sample of this study was 56 students who were divided into 2 (two) parallel classes which were selected using the cluster random sampling technique. The instruments used were in the form of a concept understanding test and a metacognitive skill assessment sheet (LP) which had been declared valid and reliable. The research data were analyzed descriptively using the n-gain equation and statisticaly with the help of IBM SPSS 23 Version software. The results showed that students' concept understanding in the experimental group (mean = 79.19; n-gain = 0.76 in the high category) was better than the control group (mean = 43.08; n-gain = 0.36 in the medium category) and significantly different (p < 0.05). Students’ Metacognitive skills showed the same thing, the experimental group (meeting I = 54.69; meeting II = 67.86; meeting III = 79.24) was found to be better than the control group (meeting I = 46.09; meeting II = 53, 01, and meeting III = 55.13). The results showed that the virtual laboratory integrated guided-inquiry learning model was effective in improving students’ concept understanding and metacognitive skills in buffer solution chemistry learning subject.
Downloads
References
Adnyana, G. P. (2012). Keterampilan Berpikir Kritis dan Pemahaman Konsep Siswa pada Model Siklus Belajar Hipotetis Deduktif. Jurnal Pendidikan Dan Pengajaran, 45(3), Article 3. https://doi.org/10.23887/jppundiksha.v45i3.1833
Arafah, K., Rusyadi, R., Arafah, B., Arafah, A., & Arafah, B. (2020). The Effect of Guided Inquiry Model and Learning Motivation on the Understanding of Physics Concepts. Talent Development and Excellence, 12, 4271–4283.
Argandi, R., Martini, K. S., & Catur Saputro, A. N. (2013). Pembelajaran Kimia Dengan Metode Inquiry Terbimbing Dilengkapi Kegiatan Laboratorium Real Dan Virtual Pada Pokok Bahasan Pemisahan Campuran. Jurnal Pendidikan Kimia Universitas Sebelas Maret, 2(2), 44–49.
Asy’ari, M., Hidayat, S., & Muhali, M. (2019). Prototipe buku ajar fisika dasar reflektif-integratif berbasis problem solving untuk meningkatkan pengetahuan metakognisi. Jurnal Inovasi Pendidikan IPA, 5(2). https://doi.org/10.21831/jipi.v5i2.27089 DOI: https://doi.org/10.21831/jipi.v5i2.27089
Azhar, A. (2017). Keefektifan Pembelajaran Konsep Kimia Larutan dengan Menerapkan Model Penggambaran Mikroskopis di Man Kabupaten Pidie. Lantanida Journal, 5(1), 73–82. https://doi.org/10.22373/lj.v5i1.2060 DOI: https://doi.org/10.22373/lj.v5i1.2060
Fitriana, M., & Haryani, S. (2016). Penggunaan strategi pembelajaran inkuiri untuk meningkatkan metakognisi siswa sma. Jurnal Inovasi Pendidikan Kimia, 10(1), Article 1. https://doi.org/10.15294/jipk.v10i1.6016
Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed). McGraw-Hill Humanities/Social Sciences/Languages.
Gunawan, G., Harjono, A., Hermansyah, H., & Herayanti, L. (2019). Guided inquiry model through virtual laboratory to enhance students’ science process skills on heat concept. Cakrawala Pendidikan, 38(2), 259–268. https://doi.org/10.21831/cp.v38i2.23345 DOI: https://doi.org/10.21831/cp.v38i2.23345
Hake, R. R. (1999). Analyzing Change/Gain Scores*. 4.
Hassan, A. (2015). Factors-affecting-students-performance-in-chemistry-case-study-in-zanzibar-secondary-schools.
Hendriek Nunaki, J., Damopolii, I., Kandowangko, N., & Nusantari, E. (2019). The Effectiveness of Inquiry-based Learning to Train the Students’ Metacognitive Skills Based on Gender Differences. International Journal of Instruction, 12, 505–516. https://doi.org/10.29333/iji.2019.12232a DOI: https://doi.org/10.29333/iji.2019.12232a
Hermansyah, H., Gunawan, G., Harjono, A., & Adawiyah, R. (2019). Guided inquiry model with virtual labs to improve students’ understanding on heat concept. Journal of Physics: Conference Series, 1153, 012116. https://doi.org/10.1088/1742-6596/1153/1/012116 DOI: https://doi.org/10.1088/1742-6596/1153/1/012116
Hunaepi, H., Firdaus, L., Samsuri, T., Susantini, E., & Raharjo, R. (2020). Efektifitas Perangat Pembelajaran Inkuiri Terintegrasi Kearifan Lokal Terhadap Keterampilan Berpikir Kritis Mahasiswa. Scholaria: Jurnal Pendidikan Dan Kebudayaan, 10(3), 269–281. https://doi.org/10.24246/j.js.2020.v10.i3.p269-281 DOI: https://doi.org/10.24246/j.js.2020.v10.i3.p269-281
Irawati, N., Setyowati, W. A. E., & Mulyani, S. (2020). Penerapan Model Pembelajaran Inkuiri Terbimbing Dilengkapi LKS untuk Meningkatkan Kemampuan Berpikir Kritis dan Prestasi Belajar Siswa pada Materi Pokok Reaksi Reduksi-Oksidasi Kelas X MIA SMA Islam 1 Surakarta Tahun Pelajaran 2017/2018. Jurnal Pendidikan Kimia, 9(1), 1–10. https://doi.org/10.20961/jpkim.v9i1.28836 DOI: https://doi.org/10.20961/jpkim.v7i1.24562
Iskandar, S. M. (2016). Pendekatan keterampilan metakognitif dalam pembelajaran sains di kelas. Erudio Journal of Educational Innovation, 2(2), 13–20. DOI: https://doi.org/10.18551/erudio.2-2.3
Jones, N. (2018). Simulated labs are booming. Nature, 562(7725), S5–S7. https://doi.org/10.1038/d41586-018-06831-1 DOI: https://doi.org/10.1038/d41586-018-06831-1
Kemendikbud. (2013). Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 54 Tahun 2013. Kemendikbud. https://akhmadsudrajat.files.wordpress.com/2013/06/01-b-salinan-lampiran-permendikbud-no-54-tahun-2013-ttg-skl.pdf
Muhali, M. (2018). Pengembangan Model Pembelajaran Reflektif-Metakognitif untuk Meningkatkan Kemampuan Metakognisi Siswa SMA (Developement of Reflective-Metacognitive Learning Model to Improve High School Students’ Metacognition Ability).
Muhali, M. (2019). Pembelajaran Inovatif Abad Ke-21. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 3(2), 25. https://doi.org/10.36312/e-saintika.v3i2.126 DOI: https://doi.org/10.36312/e-saintika.v3i2.126
Muhali, M. (2021). Pengaruh Implementasi Model Creative Problem Solving terhadap Peningkatan Kemampuan Pemecahan Masalah, Keterampilan Proses Sains, dan Kesadaran Metakognisi Peserta Didik. Lensa: Jurnal Kependidikan Fisika, 9(1), 45–57. https://doi.org/10.33394/j-lkf.v9i1.4261
Muhali, M., Asy’ari, M., & Sukaisih, R. (2020). Analisis Kemampuan Regulasi Kognisi Peserta Didik dalam Pembelajaran. Empiricism Journal, 1(2), 51–59. https://doi.org/10.36312/ej.v1i2.333
Muhali, M., Yuanita, L., & Yuanita, L. (2019). The Validity and Effectiveness of the Reflective-Metacognitive Learning Model to Improve Students’ Metacognition Ability in Indonesia. Malaysian Journal of Learning and Instruction, 16(Number 2). https://doi.org/10.32890/mjli2019.16.2.2 DOI: https://doi.org/10.32890/mjli2019.16.2.2
Mulyatun, M. (2012). Laboratorium kimia virtual: Alternatif pembelajaran kimia untuk meningkatkan hasil belajar mahasiswa tadris kimia IAIN Walisongo Semarang. Jurnal Inovasi Pendidikan Kimia, 6(2), Article 2. https://doi.org/10.15294/jipk.v6i2.6530
Sudria, I. B. N., Redhana, I. W., & Samiasih, L. (2011). Pengaruh pembelajaran interaktif laju reaksi berbantuan komputer terhadap hasil belajar siswa. Jurnal Pendidikan Dan Pengajaran, 44(1), Article 1. https://doi.org/10.23887/jppundiksha.v44i1.135
Sukaisih, R., & Muhali, M. (2014). Meningkatkan kesadaran metakognitif dan hasil belajar siswa melalui penerapan pembelajaran problem solving. Prisma Sains?: Jurnal Pengkajian Ilmu Dan Pembelajaran Matematika Dan IPA IKIP Mataram, 2(1), 71. https://doi.org/10.33394/j-ps.v2i1.803 DOI: https://doi.org/10.33394/j-ps.v2i1.803
Sukaisih, R., Muhali, M., & Asy’ari, M. (2020). Meningkatkan keterampilan metakognisi dan berpikir kritis siswa melalui pembelajaran model pemecahan masalah dengan strategi konflik-kognitif. Empiricism Journal, 1(1), 37–50. https://doi.org/10.36312/ej.v1i1.329
Sukmawati, W. (2019). Analisis level makroskopis, mikroskopis dan simbolik mahasiswa dalam memahami elektrokimia. Jurnal Inovasi Pendidikan IPA, 5. https://doi.org/10.21831/jipi.v5i2.27517 DOI: https://doi.org/10.21831/jipi.v5i2.27517
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Muhali Muhali, Muhammad Asy'ari, Roniati Sukaisih
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.