Identifikasi Karakter Biodisel Minyak Jelantah Menggunakan Instrumen Gas Cromatografi Mass Spectroscopy (GC-MS)
DOI:
https://doi.org/10.36312/ej.v3i2.1083Keywords:
Karakter Biodiesel, Minyak Jelantah, Gas Cromatografi Mass Spectroscopy.Abstract
Tujuan penelitian ini adalah mengidentifikasi dan karakterisasi biodiesel dari miyak jelantah. Penelitian ini merupakan penelitian deskriftif kualitatif. Variabel yang diamati dalam penelitian ini antara lain senyawa kimia dan struktur molekul penyusun biodiesel dari minyak jelantah. Penentuan senyawa-seyawa kimia serta struktur molekul penyusun biodiesel dari minyak jelantah diukur menggunakan instrument GC-MS. Hasil pengukuran selanjutnya dijadikan dasar dalam mengidentifikasi krakter biodiesel. Komponen tertinggi berupa senyawa asam lemak. Asam lemak berupa asam oktadekanoat dengan % area 45,10, selanjutnya metil ester heksadekanoat dengan % area 35,99%. Komponen ketiga dengan jumlah tertinggi berupa senyawa metil ester oktadekanoat dengan % area 9,42. Komponen keempat berupa metil ester tetradekanoat dengan % area 3,43. Metil ester C16 masih rendah yaitu sebesar 35,99%. Karakter biodiesel dari minyak jelahtah masih banyak mengandung asam lemak bebas golongan oktadekanoat dan konsenterasi C16 yang menjadi dasar kemudahan biodiesel untuk terbakar masih rendah.
Identification of Characteristics of Used Cooking Oil Biodiesel Using Gas Chromatography Mass Spectroscopy (GC-MS) Instruments
Abstract
The purpose of this study is to identify and characterize biodiesel from used cooking noodles. This research is a qualitative descriptive research. The variables observed in this study include chemical compounds and the molecular structure of biodiesel constituents from used cooking oil. The determination of chemical compounds and the molecular structure of biodiesel constituents of used cooking oil was measured using the GC-MS instrument. The results of the next measurement are used as a basis in identifying biodiesel krakters. The highest component is in the form of fatty acid compounds. Fatty acids are octadecanoic acid with a % area of 45.10, then methyl hexadecanoic ester with a % area of 35.99%. The third component with the highest amount is the octachonate methyl ester compound with a % area of 9.42. The fourth component is methyl ester tetradecanoate with % area 3.43. Methyl ester C16 is still low at 35.99%. The character of biodiesel from used cooking oil still contains a lot of free fatty acids of the octadecanoic group and C16 concentration, which is the basis for the ease of biodiesel to burn is still low.
Downloads
References
Ali et al. (2020). Fossil energy consumption, economic development, inward FDI impact on CO2 emissions in Pakistan: Testing EKC hypothesis through ARDL model—Ali—2021—International Journal of Finance & Economics—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.1958
Arismendi, D., Becerra-Herrera, M., Cerrato, I., & Richter, P. (2019). Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction–derivatization-gas chromatography/mass spectrometry. Talanta, 201, 480–489. https://doi.org/10.1016/j.talanta.2019.03.120
Awogbemi et al. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils | International Journal of Low-Carbon Technologies | Oxford Academic. https://academic.oup.com/ijlct/article/14/3/417/5527146
Becker et al. (2020). Quantification of microplastics in a freshwater suspended organic matter using different thermoanalytical methods – outcome of an interlaboratory comparison—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0165237019309507
Bhatnagar et al. (2009). Fatty Acid Composition, Oxidative Stability, and Radical Scavenging Activity of Vegetable Oil Blends with Coconut Oil—Bhatnagar—2009—Journal of the American Oil Chemists’ Society—Wiley Online Library. https://aocs.onlinelibrary.wiley.com/doi/abs/10.1007/s11746-009-1435-y
Bouaid et al. (2016). Effect of free fatty acids contents on biodiesel quality. Pilot plant studies—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0016236116000272
Cai, H., Liu, J., Xie, W., Kuo, J., Buyukada, M., & Evrendilek, F. (2019). Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energy Conversion and Management, 184, 436–447. https://doi.org/10.1016/j.enconman.2019.01.031
Chiu, H.-H., & Kuo, C.-H. (2020). Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. Journal of Food and Drug Analysis, 28(1), 60–73. https://doi.org/10.1016/j.jfda.2019.10.003
Chuah et al. (2017). Influence of fatty acids in waste cooking oil for cleaner biodiesel | SpringerLink. https://link.springer.com/article/10.1007/s10098-016-1274-0
Cramer, J., Sager, C., & Ernst, B. (2019). Hydroxyl Groups in Synthetic and Natural Product Derived Therapeutics – A Perspective on a Common Functional Group. Journal of Medicinal Chemistry, 62. https://doi.org/10.1021/acs.jmedchem.9b00179
Eckenrode. (2001). Environmental and Forensic applications of field-portable GC-MS: An overview | Journal of the American Society for Mass Spectrometry. https://pubs.acs.org/doi/abs/10.1016/S1044-0305%2801%2900251-3
Farabi et al. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0196890418313682
Fazaieli et al. (2020). Development of organic solvents?free mode of solidification of floating organic droplet–based dispersive liquid–liquid microextraction for the extraction of polycyclic aromatic hydrocarbons from honey samples before their determination by gas chromatography–mass spectrometry—Fazaieli—2020—Journal of Separation Science—Wiley Online Library. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jssc.202000136
Filiciotto, L., Balu, A. M., Romero, A. A., Angelici, C., van der Waal, J. C., & Luque, R. (2019). Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations. Molecular Catalysis, 479, 110564. https://doi.org/10.1016/j.mcat.2019.110564
Glass RL. (1971). Alcoholysis, saponification and the preparation of fatty acid methyl esters | SpringerLink. https://link.springer.com/article/10.1007/BF02531175
Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), Article 7. https://doi.org/10.3390/ijerph16071282
Japp et al. (1977). Lipids—Wiley Online Library. https://aocs.onlinelibrary.wiley.com/doi/abs/10.1007/BF02570901
KunWu et al. (2022). Saponification with calcium has different impacts on anaerobic digestion of saturated/unsaturated long chain fatty acids—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0960852421014760
Lam et al. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0734975010000388
Laohalidanond & Kerdsuwan. (2021). GREEN ENERGY RECOVERY FROM WASTE IN THAILAND: CURRENT SITUATION AND PERSPECTIVES - International Journal of Energy for a Clean Environment, Volume 22, 2021, Issue 5—Begell House Digital Library. https://www.dl.begellhouse.com/journals/6d18a859536a7b02,0012e12051b59272,49b8b02d00ca4d99.html
Li et al. (2020). Water Splitting: From Electrode to Green Energy System | SpringerLink. https://link.springer.com/article/10.1007/s40820-020-00469-3
Liu et al. (2019). Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0023643818309836
Lu et al. (2020). Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features—Lu—2020—Angewandte Chemie International Edition—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201914026
Ma, J., Hu, M., Sun, D., Lu, T., Sun, G., Ling, S., & Xu, L. (2021). Understanding the role of waste cooking oil residue during the preparation of rubber asphalt. Resources, Conservation and Recycling, 167, 105235. https://doi.org/10.1016/j.resconrec.2020.105235
Manduapessy and Kaimudin. (2020). Fatty Acid Profile of Fresh and Processed Shortfin Scad Fish (Decapterus macrosomma)—IOPscience. https://iopscience.iop.org/article/10.1088/1742-6596/1463/1/012024/meta
Marino, V. M., Rapisarda, T., Caccamo, M., Valenti, B., Priolo, A., Luciano, G., Natalello, A., Campione, A., & Pauselli, M. (2021). Effect of Dietary Hazelnut Peels on the Contents of Fatty Acids, Cholesterol, Tocopherols, and on the Shelf-Life of Ripened Ewe Cheese. Antioxidants, 10(4), Article 4. https://doi.org/10.3390/antiox10040538
Martins et al. (2019). Energies | Free Full-Text | Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. https://www.mdpi.com/1996-1073/12/6/964
Meng et al. (2021). Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0960852421002510
Mohan et al. (2016). Mass spectrum of octadecanoic acid, methyl ester | Download Scientific Diagram. https://www.researchgate.net/figure/Mass-spectrum-of-octadecanoic-acid-methyl-ester_fig3_311557844
Muanruksa. (2020). Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate. Renewable Energy, 146, 901–906. https://doi.org/10.1016/j.renene.2019.07.027
Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163, 59–65. https://doi.org/10.1016/j.enconman.2018.02.055
Odetoye et al. (2021). Biodiesel production from poultry wastes: Waste chicken fat and eggshell—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S221334372100631X
Pawar, K., Sankpal, P., Patil, S., Patil, P., Pawar, A., & Shinde, P. (2022). Applications of GC-MS used in Herbal plants. Asian Journal of Pharmaceutical Analysis, 53–55. https://doi.org/10.52711/2231-5675.2022.00010
Pietro et al. (2020). Processes | Free Full-Text | NMR Determination of Free Fatty Acids in Vegetable Oils. https://www.mdpi.com/2227-9717/8/4/410
Reig et al. (2020). Applied Sciences | Free Full-Text | Trends in Biodiesel Production from Animal Fat Waste. https://www.mdpi.com/2076-3417/10/10/3644
Ruben et al. (2020). Revealing hidden information in GC–MS spectra from isomeric drugs: Chemometrics based identification from 15 eV and 70 eV EI mass spectra—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S2468170920300138
Sarno and Iuliano. (2019). Biodiesel production from waste cooking oil. https://www.degruyter.com/document/doi/10.1515/gps-2019-0053/html
Sivaramakrishnan, K., & Ravikumar, P. (2012). Determination of cetane number of biodiesel and it’s influence on physical properties. Asian Journal of Applied Sciences, 7, 205–211.
Sugebo et al. (2021). Evaluation and characterization of rubber seed oil for biodiesel production | SpringerLink. https://link.springer.com/article/10.1007/s13399-021-01900-4
Surtini, & Badriyah, Z. (2021). Correlation of Repeat Cooking Oil Use to Increasing Cholesterol Levels in Community, Gandong Village, Bandung District, Tulungagung Regency In 2021. The 3rd Joint International Conference, 3(1), 254–259.
Umar et al. (2021). The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0959652620349076
Vázquez et al. (2008). Combining TXRF, FT-IR and GC–MS information for identification of inorganic and organic components in black pigments of rock art from Alero Hornillos 2 (Jujuy, Argentina) | SpringerLink. https://link.springer.com/article/10.1007/s00216-008-2038-4
Walker et al. (2019). Molecular curvature, specific intermolecular interactions and the twist-bend nematic phase: The synthesis and characterisation of the 1-(4-cyanobiphenyl-4?-yl)-6-(4-alkylanilinebenzylidene-4?-oxy)hexanes (CB6O.m)—Soft Matter (RSC Publishing). https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm00026g/unauth
Wang, S., Yu, H., Su, Q., & Zuo, J. (2021). Exploring the role of heterotrophs in partial nitritation-anammox process treating thermal hydrolysis process—Anaerobic digestion reject water. Bioresource Technology, 341, 125762. https://doi.org/10.1016/j.biortech.2021.125762
Wu, K., Xu, W., Wang, C., Lu, J., & He, X. (2022). Saponification with calcium has different impacts on anaerobic digestion of saturated/unsaturated long chain fatty acids. Bioresource Technology, 343, 126134. https://doi.org/10.1016/j.biortech.2021.126134
Yang et al. (2022). IJERPH | Free Full-Text | Characterization of Dissolved Organic Matter in Solar Ponds by Elemental Analysis, Infrared Spectroscopy, Nuclear Magnetic Resonance and Pyrolysis–GC–MS. https://www.mdpi.com/1660-4601/19/15/9067
Zhang et al. (2019). Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs—New Journal of Chemistry (RSC Publishing). https://pubs.rsc.org/en/content/articlelanding/2019/nj/c8nj06291a/unauth
Zhang, W., Ji, H., Song, Y., Ma, S., Xiong, W., Chen, C., Chen, B., & Zhang, X. (2020). Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid. Journal of Cleaner Production, 274, 122918. https://doi.org/10.1016/j.jclepro.2020.122918
Zhu, L., Tong, L., Zhao, N., Li, J., & Lv, Y. (2019). Coupling interaction between porous biochar and nano zero valent iron/nano ?-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. Chemosphere, 219, 493–503. https://doi.org/10.1016/j.chemosphere.2018.12.013
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Gargazi Gargazi, Hendrawani Hendrawani, Hulyadi Hulyadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.