Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Algoritma CNN sebagai Media Pembelajaran IPA
DOI:
https://doi.org/10.36312/ej.v6i2.3071Keywords:
Klasifikasi Penyakit Daun Jagung, Convolutional Neural Network (CNN), Pembelajaran IPAAbstract
Indonesia merupakan negara agraris dengan potensi besar di sektor pertanian, salah satunya pada komoditas jagung (Zea mays). Permasalahan umum yang dihadapi petani jagung adalah serangan penyakit pada daun, seperti bercak daun, hawar daun, dan karat daun, yang dapat menurunkan produktivitas tanaman. Penelitian ini bertujuan untuk mengembangkan aplikasi berbasis deep learning dengan algoritma Convolutional Neural Network (CNN) guna mengidentifikasi dan mengklasifikasikan penyakit daun jagung secara real-time. Aplikasi dirancang dalam bentuk hybrid agar dapat diakses melalui perangkat Android maupun iOS, serta berfungsi sebagai media pembelajaran interaktif pada mata pelajaran IPA, khususnya bidang agronomi. Hasil pengujian model CNN terhadap dataset uji menunjukkan akurasi sebesar 88%, sementara pengujian terhadap 100 data lapangan menggunakan metode confusion matrix menghasilkan akurasi sebesar 89%. Temuan ini menunjukkan bahwa penerapan teknologi CNN efektif dalam klasifikasi penyakit daun jagung serta berpotensi meningkatkan kualitas pembelajaran berbasis teknologi di bidang sains alam.
Identification and Classification of Corn Leaf Diseases Using CNN Algorithm as a Learning Media for Science Education
Abstract
Indonesia is an agrarian country with significant potential in the agricultural sector, including corn (Zea mays) as a major source of carbohydrates and protein besides rice. One of the common problems faced by corn farmers is leaf disease, such as leaf spot, leaf blight, and rust, which can significantly reduce crop productivity. This study aims to develop a deep learning-based application using the Convolutional Neural Network (CNN) algorithm to identify and classify corn leaf diseases in real-time. The application is built as a hybrid platform, making it accessible on both Android and iOS devices. In addition to functioning as a diagnostic tool for farmers, the application serves as an interactive learning medium for science education, particularly in agricultural topics. The CNN model achieved an accuracy of 88% on the test dataset, and further evaluation using 100 real-field data samples and a confusion matrix yielded an accuracy of 89%. These findings demonstrate the effectiveness of CNN in image-based disease classification and its potential to enhance the quality of technology-assisted learning in natural science education.
Downloads
References
Alirezazadeh, P., Schirrmann, M., & Stolzenburg, F. (2022). Improving deep learning-based plant disease classification with attention mechanism. Gesunde Pflanzen, 75(1), 49-59. https://doi.org/10.1007/s10343-022-00796-y
Alpayd?n, E. (2010). Introduction to machine learning. Massachusetts Institute of Technology.
Alshammari, K., Alshammari, R., Alshammari, A., & Alkhudaydi, T. (2024). An improved pear disease classification approach using cycle generative adversarial network. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-57143-6
Asrafil, A., Paliwang, A., Septian, M. R. D., Cahyanti, M., & Swedia, R. (2020). Klasifikasi penyakit tanaman apel dari citra daun. Sebatik, 207–212.
Bondre, S. and Patil, D. (2023). Recent advances in agricultural disease image recognition technologies: a review. Concurrency and Computation Practice and Experience, 35(9). https://doi.org/10.1002/cpe.7644
Chenni, K. and Rada, L. (2025). High-resolution leaf disease classification using deep learning advancing agricultural technology through innovative approaches., 54. https://doi.org/10.1117/12.3055893
Das, P., Rupa, S., Pumrin, S., Das, U., & Hossen, M. (2024). Deep learning for plant disease detection and classification: a systematic analysis and review. Current Applied Science and Technology, e0259016. https://doi.org/10.55003/cast.2024.259016
Felix, F., Faisal, S., Butarbutar, T. F. M., & Sirait, P. (2019). Implementasi CNN dan SVM untuk identifikasi penyakit tomat via daun. Jurnal Informatika, 20(2), 117–134.
Fenu, G. and Malloci, F. (2021). Diamos plant: a dataset for diagnosis and monitoring plant disease. Agronomy, 11(11), 2107. https://doi.org/10.3390/agronomy11112107
Ghosh, S., Singh, A., Kavita, K., Jhanjhi, N., Masud, M., & Aljahdali, S. (2022). Svm and knn based cnn architectures for plant classification. Computers Materials & Continua, 71(3), 4257-4274. https://doi.org/10.32604/cmc.2022.023414
Goodfellow, I., Bengio, Y., & Courville, A. (2012). Deep learning. Foreign Affairs, 91(5), 1689–1699.
Gulzar, Y. (2023). Fruit image classification model based on mobilenetv2 with deep transfer learning technique. Sustainability, 15(3), 1906. https://doi.org/10.3390/su15031906
Hanin, M. A., Patmasari, R., & Nur, R. Y. (2021). Sistem klasifikasi penyakit kulit menggunakan convolutional neural network (CNN). Jurnal Teknik Informatika, 8(1), 273–281.
Hasan, I., D, H. B., & lainnya. (2021). Klasifikasi jenis jerawat menggunakan convolutional neural networks. Jurnal Teknik Elektro dan Komputer, 8(1), 358–372.
Hu, K., Li, H., Fu, X., & Zhou, S. (2024). Customized weighted ensemble of modified transfer learning models for the detection of sugarcane leaf diseases. Electronics, 13(23), 4715. https://doi.org/10.3390/electronics13234715
Islam, M., Sultana, S., Farid, F., Islam, M., Rashid, M., Bari, B., … & Husen, M. (2022). Multimodal hybrid deep learning approach to detect tomato leaf disease using attention based dilated convolution feature extractor with logistic regression classification. Sensors, 22(16), 6079. https://doi.org/10.3390/s22166079
Kamilaris, A. and Prenafeta?Boldú, F. (2018). Deep learning in agriculture: a survey. Computers and Electronics in Agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
King, P. and Koshel, R. (2024). Understanding convolutional neural network classification errors caused by image quality degradation., 15. https://doi.org/10.1117/12.3027143
Kusmiadi, E. (2014). Pengertian dan sejarah perkembangan pertanian. Pengantar Ilmu Pertanian, 1, 1–28. http://repository.ut.ac.id/4425/1/LUHT4219-M1.pdf
Lu, J., Tan, L., & Jiang, H. (2021). Review on convolutional neural network (cnn) applied to plant leaf disease classification. Agriculture, 11(8), 707. https://doi.org/10.3390/agriculture11080707
Mazumder, M., Mridha, M., Alfarhood, S., Safran, M., Abdullah-Al-Jubair, M., & Che, D. (2024). A robust and light-weight transfer learning-based architecture for accurate detection of leaf diseases across multiple plants using less amount of images. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1321877
McAndrew, A. (2015). A computational introduction to digital image processing (2nd ed.).
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Machine learning. SpringerBriefs in Computer Science. https://doi.org/10.1007/978-3-319-05606-7_6
Moupojou, E., Tagne, A., Retraint, F., Tadonkemwa, A., Wilfried, D., Tapamo, H., … & Nkenlifack, M. (2023). Fieldplant: a dataset of field plant images for plant disease detection and classification with deep learning. Ieee Access, 11, 35398-35410. https://doi.org/10.1109/access.2023.3263042
Mukherjee, G., Chatterjee, A., & Tudu, B. (2022). Identification of the types of disease for tomato plants using a modified gray wolf optimization optimized mobilenetv2 convolutional neural network architecture driven computer vision framework. Concurrency and Computation Practice and Experience, 34(22). https://doi.org/10.1002/cpe.7161
Muslikh, A., Setiadi, D., & Ojugo, A. (2023). Rice disease recognition using transfer learning xception convolutional neural network. Jurnal Teknik Informatika (Jutif), 4(6), 1535-1540. https://doi.org/10.52436/1.jutif.2023.4.6.1529
Nidhra, S. (2012). Black box and white box testing techniques – A literature review. International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204
Nikan, S., Antonini, G., & Pearce, J. (2024). Optimizing strawberry disease and quality detection with vision transformers and attention-based convolutional neural networks. Foods, 13(12), 1869. https://doi.org/10.3390/foods13121869
Prottasha, M., Hossain, A., Rahman, M., Reza, S., & Hossain, D. (2022). Identification of various rice plant diseases using optimized convolutional neural network. International Journal of Computing and Digital Systems, 12(7), 1539-1551. https://doi.org/10.12785/ijcds/1201124
Purwanto, S. (2007). Perkembangan produksi dan kebijakan peningkatan produksi jagung. Dalam Jagung: Teknik Produksi dan Pengembangan (hlm. 456–461).
Ramadan, S., Sakib, T., Farid, F., Islam, M., Abdullah, J., Bhuiyan, M., … & Karim, H. (2024). Improving wheat leaf disease classification: evaluating augmentation strategies and cnn-based models with limited dataset. Ieee Access, 12, 69853-69874. https://doi.org/10.1109/access.2024.3397570
Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Analisis dan implementasi diagnosis penyakit sawit dengan metode convolutional neural network (CNN). Jurnal Paradigma UBSI, 22(2), 117–123.
Reda, M., Suwwan, R., Alkafri, S., Rashed, Y., & Shanableh, T. (2022). Agroaid: a mobile app system for visual classification of plant species and diseases using deep learning and tensorflow lite. Informatics, 9(3), 55. https://doi.org/10.3390/informatics9030055
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). Mobilenetv2: inverted residuals and linear bottlenecks., 4510-4520. https://doi.org/10.1109/cvpr.2018.00474
Sasmoko, D et al., (2025) “Systematic Literature Review on CNN and YOLO Algorithms for Detecting Plant Diseases in Precision Agriculture,” Systematic Literature Review Journal, vol. 1, no. 1, Jan. 2025.
Sudjono, M. S. (2015). Penyakit jagung dan pengendaliannya. Balai Penelitian Tanaman Pangan Maros, 1, 34–36. http://balitsereal.litbang.pertanian.go.id/wp-content/uploads/2018/08/11penyakit.pdf
Sushma, D., Ramya, D., Yashaswini, D., Chaithra, T., & Kavaya, H. (2024). Detecting plant leaf diseases through image processing and cnn with preventive measures. Int Res J Adv Engg Mgt, 2(05), 1710-1713. https://doi.org/10.47392/irjaem.2024.0248
Trinh, M., Jung, E., & Trinh, L. (2023). Tomato disease identification with shallow convolutional neural networks. J Emerg Invest. https://doi.org/10.59720/22-171
Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2019). Advances in deep learning (Vol. 57). https://doi.org/10.1007/978-981-13-6794-6
Yuan, Y., Chen, L., Ren, Y., Wang, S., & Li, Y. (2022). Impact of dataset on the study of crop disease image recognition. International Journal of Agricultural and Biological Engineering, 15(5), 181-186. https://doi.org/10.25165/j.ijabe.20221505.7005
Yuliani, E., Nur Aini, A., & Uswatun Khasanah, C. (2019). Perbandingan jumlah epoch dan steps per epoch pada convolutional neural network untuk meningkatkan akurasi dalam klasifikasi gambar. Jurnal Teknologi Informasi dan Ilmu Komputer, 5, 23–27.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Mahrus Zain, Romi Ramadhani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.