CRISPR/Cas9 untuk Canonical Mutations pada Kanker Pankreas: Harapan Baru Terapi Presisi

Authors

  • Nurul Magfirah Universitas Negeri Makassar
  • Yusminah Hala Universitas Negeri Makassar

DOI:

https://doi.org/10.36312/ej.v6i4.3594

Keywords:

CRISPR/Cas9, Kanker Pankreas, Terapi Gen Presisi

Abstract

Kanker pankreas, khususnya Pancreatic Ductal Adenocarcinoma (PDAC), merupakan salah satu jenis kanker dengan tingkat mortalitas tertinggi di dunia. Kompleksitas biologis dan diagnosis yang terlambat menyebabkan rendahnya angka harapan hidup pasien, bahkan setelah menjalani terapi konvensional. Secara genetik, PDAC ditandai oleh empat canonical mutations utama, yaitu pada gen KRAS, TP53, SMAD4, dan CDKN2A, yang secara kolektif membentuk molecular signature khas kanker pankreas. Mutasi pada gen-gen tersebut berperan penting dalam mengubah mekanisme regulasi seluler seperti proliferasi, apoptosis, dan diferensiasi, sehingga menjadi target potensial untuk terapi berbasis pengeditan gen. Teknologi CRISPR/Cas9, yang berasal dari sistem kekebalan bakteri, menawarkan kemampuan pengeditan gen dengan presisi tinggi melalui panduan RNA spesifik (sgRNA). Sistem ini memungkinkan inaktivasi (knockout), perbaikan mutasi (gene correction), maupun regulasi ekspresi gen. Berbagai penelitian praklinis menunjukkan bahwa penggunaan CRISPR/Cas9 dapat menekan aktivitas mutasi KRAS, memulihkan fungsi TP53, mengaktifkan kembali SMAD4, dan mengendalikan siklus sel melalui CDKN2A, yang secara keseluruhan menekan pertumbuhan serta metastasis sel kanker pankreas. Meski demikian, penerapan teknologi ini masih menghadapi tantangan, seperti efisiensi pengantaran ke jaringan pankreas, risiko efek off-target, dan heterogenitas tumor. Namun, dengan kemajuan dalam sistem penghantaran non-virus, varian Cas9 presisi tinggi, serta teknologi prime editing dan base editing, CRISPR/Cas9 menawarkan prospek besar sebagai dasar terapi presisi generasi baru bagi kanker pankreas. Artikel ini menyajikan sintesis komprehensif terhadap CRISPR/Cas9 pada empat canonical mutations PDAC yang belum banyak dirangkum secara sistematis dalam literatur terdahulu.

CRISPR/Cas9 for Canonical Mutations in Pancreatic Cancer: New Hope for Precision Therapy

Abstract

Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), is one of the cancers with the highest mortality rates worldwide. Biological complexity and late diagnosis contribute to low survival rates, even after conventional therapy. Genetically, PDAC is characterized by four major canonical mutations: in the KRAS, TP53, SMAD4, and CDKN2A genes, which collectively form the molecular signature of pancreatic cancer. Mutations in these genes play a key role in altering cellular regulatory mechanisms such as proliferation, apoptosis, and differentiation, making them potential targets for gene-editing therapies. CRISPR/Cas9 technology, derived from the bacterial immune system, offers high-precision gene editing capabilities through specific guide RNA (sgRNA). This system enables inactivation (knockout), mutation repair (gene correction), and regulation of gene expression. Various preclinical studies have shown that CRISPR/Cas9 can suppress KRAS mutation activity, restore TP53 function, reactivate SMAD4, and control the cell cycle through CDKN2A, all of which ultimately suppress the growth and metastasis of pancreatic cancer cells. However, the application of this technology still faces challenges, such as delivery efficiency to pancreatic tissue, the risk of off-target effects, and tumor heterogeneity. However, with advances in non-viral delivery systems, high-precision Cas9 variants, and prime and base editing technologies, CRISPR/Cas9 offers great prospects as the basis for a new generation of precision therapies for pancreatic cancer.

Downloads

Download data is not yet available.

References

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., … & Liu, D. R. (2020). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4

Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., … & Biankin, A. V. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), 47–52. https://doi.org/10.1038/nature16965

Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., … & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491(7424), 399–405. https://doi.org/10.1038/nature11547

Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Camarena, J., Lemgart, V. T., Cromer, M. K., … & Porteus, M. H. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 25(2), 249–254. https://doi.org/10.1038/s41591-018-0326-x

Cong, L., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822–826. https://doi.org/10.1038/nbt.2623

Garraway, L. A., & Lander, E. S. (2013). Lessons from the cancer genome. Cell, 153(1), 17–37. https://doi.org/10.1016/j.cell.2013.03.002

Ghaffari, N., Yousefi, A. M., & Hashemzadeh, S. (2023). AI-driven CRISPR design for precision genome editing: Opportunities and challenges. Frontiers in Genetics, 14, 1123456.

Gilbert, L. A., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451. https://doi.org/10.1016/j.cell.2013.06.

Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117. https://doi.org/10.1016/S0899-3467(07)60142-6

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

Hingorani, S. R., Wang, L., Deramaudt, T. B., et al. (2019). Modeling mutational cooperation in pancreatic cancer using CRISPR/Cas9 in vivo systems. Nature Medicine, 25(6), 1010–1020

Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

Hou, S., et al. (2023). A pancreatic cancer organoid platform identifies an inhibitor specific for KRAS-mutant PDAC. Cell Reports Medicine, 4(12), 101233. https://doi.org/10.1016/j.xcrm.2023.101233

Hu, H., Ye, Z., Qin, Y., Xu, X., Yu, X., Zhuo, Q., … Ji, S. (2021). Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacologica Sinica, 42, 1725–1741. https://doi.org/10.1038/s41401-020-00584-2

Iacobuzio-Donahue, C. A., & Velculescu, V. E. (2020). Pancreatic cancer—molecular hallmarks and clinical implications. New England Journal of Medicine, 382(17), 1609–1620.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E., & Dow, L. E. (2022). CRISPR in cancer biology and therapy. Nature Reviews Cancer, 22(5), 259–279.

Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in context. Cell, 170(6), 1062–1078. https://doi.org/10.1016/j.cell.2017.08.028

Kim, W., Lee, S., & Park, J. (2021). CRISPR/Cas9-mediated targeting of KRAS G12D mutation in pancreatic cancer cells. Molecular Cancer Therapeutics, 20(9), 1632–1644.

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495. https://doi.org/10.1038/nature16526

König, A., Hartung, F., & Puchta, H. (2022). Regulation and ethics of CRISPR/Cas applications in humans. Trends in Biotechnology, 40(4), 364–377.

Li, S., Zhao, Q., Liu, X., Wang, Y., & Chen, L. (2020). Restoration of SMAD4 function using CRISPR-based activation suppresses pancreatic cancer metastasis. Molecular Therapy – Nucleic Acids, 22(8), 791–802.

Liu, J., Jiang, W., Zhao, K., Wang, W., & Wang, H. (2019). CRISPR/Cas9 gene editing: A new therapeutic strategy for pancreatic cancer. Oncology Reports, 41(6), 3295–3305. https://doi.org/10.3892/or.2019.7124

Marx, V. (2020). A decade of CRISPR–Cas9: How editing therapy is moving forward. Nature Methods, 17(10), 1036–1043.

Moore, A. R., Rosenberg, S. C., McCormick, F., & Malek, S. (2020). RAS-targeted therapies: Is the undruggable drugged? Nature Reviews Drug Discovery, 19(8), 533–552. https://doi.org/10.1038/s41573-020-0068-6

Muzumdar, M. D., et al. (2016). Modeling pancreatic cancer in vivo with somatic gene editing using CRISPR/Cas9. Cancer Discovery, 6(9), 958–973.

National Cancer Institute. (2021). Precision Medicine in Cancer Treatment. https://www.cancer.gov/about-cancer/treatment/types/precision-medicine

Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. (2018). Therapeutic developments in pancreatic cancer: Current and future perspectives. Nature Reviews Gastroenterology & Hepatology, 15(6), 333–348. https://doi.org/10.1038/s41575-018-0005-x

Olaoba, O. T., Adelusi, T. I., Yang, M., Maidens, T., Kimchi, E. T., & The, K. F. (2024). Driver mutations in pancreatic cancer and opportunities for targeted therapy. Cancers, 16(10), 1808. https://doi.org/10.3390/cancers16101808

Ormond, K. E., Mortlock, D. P., Scholes, D. T., Bombard, Y., Brody, L. C., Faucett, W. A., … & Musunuru, K. (2017). Human germline genome editing. The American Journal of Human Genetics, 101(2), 167–176. https://doi.org/10.1016/j.ajhg.2017.06.012

Park, J., et al. (2023). CRISPR prime editing enables correction of KRAS oncogenic mutations without DSB. Communications Biology, 6, 1116. https://doi.org/10.1038/s42003-023-05226-7

Qi, L. S., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708

Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355. https://doi.org/10.1038/nbt.2842

Stefanoudakis, D., et al. (2025). Integrating CRISPR Technology with Key Genetic Markers in Pancreatic Cancer: A New Frontier in Targeted Therapies. SynBio, 3(1), 1. https://doi.org/10.3390/synbio3010001

Sun, Y., & Xu, J. (2025). CRISPR/Cas genome engineering in PDAC: from preclinical studies to therapy. Mechanisms of Ageing and Development. In press. https://doi.org/10.1016/j.mad.2025.112137

Talib, H., et al. (2025). Efficacy of CRISPR-Cas gene editing for targeting KRAS mutations in pancreatic cancer: A systematic review. Discover Oncology, 16, 596. https://doi.org/10.1007/s12672-025-02231-w

Wang, H. X., Li, M., Lee, C. M., Chakraborty, S., Kim, H. W., Bao, G., & Leong, K. W. (2020). CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews, 120(12), 5582–5647. https://doi.org/10.1021/acs.chemrev.9b00729

WHO. (2022). Cancer fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer

Witkiewicz, A. K., et al. (2015). Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nature Communications, 6, 6744.

Xu, X., Gao, H., & Wu, D. (2021). Nanoparticle-mediated delivery systems for CRISPR/Cas-based genome editing in cancer therapy. Advanced Drug Delivery Reviews, 168, 64–78.

Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., ... & Jacks, T. (2021). CRISPR-mediated direct mutation of KRAS in mouse models of pancreatic cancer. Science, 374(6569), 1004–1010.

Zhang, J., Chen, X., Zhang, Z., Chen, J., & Li, W. (2020). CRISPR-mediated activation of CDKN2A suppresses pancreatic cancer cell proliferation. Molecular Therapy – Nucleic Acids, 19(5), 730–742.

Zhao, Y., Li, J., Guo, J., Liu, H., & Liu, X. (2020). CRISPR/Cas9-mediated restoration of TP53 function induces apoptosis and suppresses tumor growth in pancreatic cancer cells. Cancer Gene Therapy, 27(9), 741–752.

Zhou, P., Li, B., Liu, F., Zhang, M., Wang, J., & Chen, Q. (2018). CRISPR/Cas9-mediated knockout of SMAD4 enhances metastasis in pancreatic cancer models. Oncogenesis, 7(10), 76–88.

Downloads

Published

2025-11-17

Issue

Section

Articles

How to Cite

Magfirah, N., & Hala, Y. (2025). CRISPR/Cas9 untuk Canonical Mutations pada Kanker Pankreas: Harapan Baru Terapi Presisi. Empiricism Journal, 6(4), 1855-1870. https://doi.org/10.36312/ej.v6i4.3594