CRISPR/Cas9 untuk Canonical Mutations pada Kanker Pankreas: Harapan Baru Terapi Presisi
DOI:
https://doi.org/10.36312/ej.v6i4.3594Keywords:
CRISPR/Cas9, Kanker Pankreas, Terapi Gen PresisiAbstract
Kanker pankreas, khususnya Pancreatic Ductal Adenocarcinoma (PDAC), merupakan salah satu jenis kanker dengan tingkat mortalitas tertinggi di dunia. Kompleksitas biologis dan diagnosis yang terlambat menyebabkan rendahnya angka harapan hidup pasien, bahkan setelah menjalani terapi konvensional. Secara genetik, PDAC ditandai oleh empat canonical mutations utama, yaitu pada gen KRAS, TP53, SMAD4, dan CDKN2A, yang secara kolektif membentuk molecular signature khas kanker pankreas. Mutasi pada gen-gen tersebut berperan penting dalam mengubah mekanisme regulasi seluler seperti proliferasi, apoptosis, dan diferensiasi, sehingga menjadi target potensial untuk terapi berbasis pengeditan gen. Teknologi CRISPR/Cas9, yang berasal dari sistem kekebalan bakteri, menawarkan kemampuan pengeditan gen dengan presisi tinggi melalui panduan RNA spesifik (sgRNA). Sistem ini memungkinkan inaktivasi (knockout), perbaikan mutasi (gene correction), maupun regulasi ekspresi gen. Berbagai penelitian praklinis menunjukkan bahwa penggunaan CRISPR/Cas9 dapat menekan aktivitas mutasi KRAS, memulihkan fungsi TP53, mengaktifkan kembali SMAD4, dan mengendalikan siklus sel melalui CDKN2A, yang secara keseluruhan menekan pertumbuhan serta metastasis sel kanker pankreas. Meski demikian, penerapan teknologi ini masih menghadapi tantangan, seperti efisiensi pengantaran ke jaringan pankreas, risiko efek off-target, dan heterogenitas tumor. Namun, dengan kemajuan dalam sistem penghantaran non-virus, varian Cas9 presisi tinggi, serta teknologi prime editing dan base editing, CRISPR/Cas9 menawarkan prospek besar sebagai dasar terapi presisi generasi baru bagi kanker pankreas. Artikel ini menyajikan sintesis komprehensif terhadap CRISPR/Cas9 pada empat canonical mutations PDAC yang belum banyak dirangkum secara sistematis dalam literatur terdahulu.
CRISPR/Cas9 for Canonical Mutations in Pancreatic Cancer: New Hope for Precision Therapy
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), is one of the cancers with the highest mortality rates worldwide. Biological complexity and late diagnosis contribute to low survival rates, even after conventional therapy. Genetically, PDAC is characterized by four major canonical mutations: in the KRAS, TP53, SMAD4, and CDKN2A genes, which collectively form the molecular signature of pancreatic cancer. Mutations in these genes play a key role in altering cellular regulatory mechanisms such as proliferation, apoptosis, and differentiation, making them potential targets for gene-editing therapies. CRISPR/Cas9 technology, derived from the bacterial immune system, offers high-precision gene editing capabilities through specific guide RNA (sgRNA). This system enables inactivation (knockout), mutation repair (gene correction), and regulation of gene expression. Various preclinical studies have shown that CRISPR/Cas9 can suppress KRAS mutation activity, restore TP53 function, reactivate SMAD4, and control the cell cycle through CDKN2A, all of which ultimately suppress the growth and metastasis of pancreatic cancer cells. However, the application of this technology still faces challenges, such as delivery efficiency to pancreatic tissue, the risk of off-target effects, and tumor heterogeneity. However, with advances in non-viral delivery systems, high-precision Cas9 variants, and prime and base editing technologies, CRISPR/Cas9 offers great prospects as the basis for a new generation of precision therapies for pancreatic cancer.
Downloads
References
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., … & Liu, D. R. (2020). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4
Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., … & Biankin, A. V. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), 47–52. https://doi.org/10.1038/nature16965
Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., … & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491(7424), 399–405. https://doi.org/10.1038/nature11547
Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Camarena, J., Lemgart, V. T., Cromer, M. K., … & Porteus, M. H. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 25(2), 249–254. https://doi.org/10.1038/s41591-018-0326-x
Cong, L., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822–826. https://doi.org/10.1038/nbt.2623
Garraway, L. A., & Lander, E. S. (2013). Lessons from the cancer genome. Cell, 153(1), 17–37. https://doi.org/10.1016/j.cell.2013.03.002
Ghaffari, N., Yousefi, A. M., & Hashemzadeh, S. (2023). AI-driven CRISPR design for precision genome editing: Opportunities and challenges. Frontiers in Genetics, 14, 1123456.
Gilbert, L. A., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451. https://doi.org/10.1016/j.cell.2013.06.
Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117. https://doi.org/10.1016/S0899-3467(07)60142-6
Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hingorani, S. R., Wang, L., Deramaudt, T. B., et al. (2019). Modeling mutational cooperation in pancreatic cancer using CRISPR/Cas9 in vivo systems. Nature Medicine, 25(6), 1010–1020
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
Hou, S., et al. (2023). A pancreatic cancer organoid platform identifies an inhibitor specific for KRAS-mutant PDAC. Cell Reports Medicine, 4(12), 101233. https://doi.org/10.1016/j.xcrm.2023.101233
Hu, H., Ye, Z., Qin, Y., Xu, X., Yu, X., Zhuo, Q., … Ji, S. (2021). Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacologica Sinica, 42, 1725–1741. https://doi.org/10.1038/s41401-020-00584-2
Iacobuzio-Donahue, C. A., & Velculescu, V. E. (2020). Pancreatic cancer—molecular hallmarks and clinical implications. New England Journal of Medicine, 382(17), 1609–1620.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E., & Dow, L. E. (2022). CRISPR in cancer biology and therapy. Nature Reviews Cancer, 22(5), 259–279.
Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in context. Cell, 170(6), 1062–1078. https://doi.org/10.1016/j.cell.2017.08.028
Kim, W., Lee, S., & Park, J. (2021). CRISPR/Cas9-mediated targeting of KRAS G12D mutation in pancreatic cancer cells. Molecular Cancer Therapeutics, 20(9), 1632–1644.
Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495. https://doi.org/10.1038/nature16526
König, A., Hartung, F., & Puchta, H. (2022). Regulation and ethics of CRISPR/Cas applications in humans. Trends in Biotechnology, 40(4), 364–377.
Li, S., Zhao, Q., Liu, X., Wang, Y., & Chen, L. (2020). Restoration of SMAD4 function using CRISPR-based activation suppresses pancreatic cancer metastasis. Molecular Therapy – Nucleic Acids, 22(8), 791–802.
Liu, J., Jiang, W., Zhao, K., Wang, W., & Wang, H. (2019). CRISPR/Cas9 gene editing: A new therapeutic strategy for pancreatic cancer. Oncology Reports, 41(6), 3295–3305. https://doi.org/10.3892/or.2019.7124
Marx, V. (2020). A decade of CRISPR–Cas9: How editing therapy is moving forward. Nature Methods, 17(10), 1036–1043.
Moore, A. R., Rosenberg, S. C., McCormick, F., & Malek, S. (2020). RAS-targeted therapies: Is the undruggable drugged? Nature Reviews Drug Discovery, 19(8), 533–552. https://doi.org/10.1038/s41573-020-0068-6
Muzumdar, M. D., et al. (2016). Modeling pancreatic cancer in vivo with somatic gene editing using CRISPR/Cas9. Cancer Discovery, 6(9), 958–973.
National Cancer Institute. (2021). Precision Medicine in Cancer Treatment. https://www.cancer.gov/about-cancer/treatment/types/precision-medicine
Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. (2018). Therapeutic developments in pancreatic cancer: Current and future perspectives. Nature Reviews Gastroenterology & Hepatology, 15(6), 333–348. https://doi.org/10.1038/s41575-018-0005-x
Olaoba, O. T., Adelusi, T. I., Yang, M., Maidens, T., Kimchi, E. T., & The, K. F. (2024). Driver mutations in pancreatic cancer and opportunities for targeted therapy. Cancers, 16(10), 1808. https://doi.org/10.3390/cancers16101808
Ormond, K. E., Mortlock, D. P., Scholes, D. T., Bombard, Y., Brody, L. C., Faucett, W. A., … & Musunuru, K. (2017). Human germline genome editing. The American Journal of Human Genetics, 101(2), 167–176. https://doi.org/10.1016/j.ajhg.2017.06.012
Park, J., et al. (2023). CRISPR prime editing enables correction of KRAS oncogenic mutations without DSB. Communications Biology, 6, 1116. https://doi.org/10.1038/s42003-023-05226-7
Qi, L. S., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355. https://doi.org/10.1038/nbt.2842
Stefanoudakis, D., et al. (2025). Integrating CRISPR Technology with Key Genetic Markers in Pancreatic Cancer: A New Frontier in Targeted Therapies. SynBio, 3(1), 1. https://doi.org/10.3390/synbio3010001
Sun, Y., & Xu, J. (2025). CRISPR/Cas genome engineering in PDAC: from preclinical studies to therapy. Mechanisms of Ageing and Development. In press. https://doi.org/10.1016/j.mad.2025.112137
Talib, H., et al. (2025). Efficacy of CRISPR-Cas gene editing for targeting KRAS mutations in pancreatic cancer: A systematic review. Discover Oncology, 16, 596. https://doi.org/10.1007/s12672-025-02231-w
Wang, H. X., Li, M., Lee, C. M., Chakraborty, S., Kim, H. W., Bao, G., & Leong, K. W. (2020). CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews, 120(12), 5582–5647. https://doi.org/10.1021/acs.chemrev.9b00729
WHO. (2022). Cancer fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer
Witkiewicz, A. K., et al. (2015). Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nature Communications, 6, 6744.
Xu, X., Gao, H., & Wu, D. (2021). Nanoparticle-mediated delivery systems for CRISPR/Cas-based genome editing in cancer therapy. Advanced Drug Delivery Reviews, 168, 64–78.
Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., ... & Jacks, T. (2021). CRISPR-mediated direct mutation of KRAS in mouse models of pancreatic cancer. Science, 374(6569), 1004–1010.
Zhang, J., Chen, X., Zhang, Z., Chen, J., & Li, W. (2020). CRISPR-mediated activation of CDKN2A suppresses pancreatic cancer cell proliferation. Molecular Therapy – Nucleic Acids, 19(5), 730–742.
Zhao, Y., Li, J., Guo, J., Liu, H., & Liu, X. (2020). CRISPR/Cas9-mediated restoration of TP53 function induces apoptosis and suppresses tumor growth in pancreatic cancer cells. Cancer Gene Therapy, 27(9), 741–752.
Zhou, P., Li, B., Liu, F., Zhang, M., Wang, J., & Chen, Q. (2018). CRISPR/Cas9-mediated knockout of SMAD4 enhances metastasis in pancreatic cancer models. Oncogenesis, 7(10), 76–88.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurul Magfirah, Yusminah Hala

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.