Potensi Sacha Inchi (Plukenetia Volubilis L.) Sebagai Agen Antihiperlipidemia: Systematic Literatur Review
DOI:
https://doi.org/10.36312/wg991k17Keywords:
Antihiperlipidemia, Kolesterol, Omega-3, Sacha InchiAbstract
Hiperlipidemia merupakan faktor risiko utama penyakit kardiovaskular dan masih menjadi penyebab morbiditas serta mortalitas yang tinggi. Sacha Inchi (Plukenetia volubilis L.) mengandung asam lemak esensial omega-3 (ALA), omega-6 (LA), omega-9 (OA), serta tokoferol dan fitosterol yang berperan dalam regulasi metabolisme lipid. Penelitian ini bertujuan untuk meninjau secara sistematis bukti ilmiah mengenai potensi Sacha Inchi sebagai agen antihiperlipidemia berdasarkan hasil penelitian in vitro, in vivo, dan uji klinis yang dipublikasikan pada jurnal terindeks Scopus periode 2016–2025. Metode yang digunakan adalah Systematic Literature Review (SLR) dengan mengacu pada pedoman PRISMA 2020 dan menggunakan basis data Scopus. Dari 25 artikel yang ditemukan, sebanyak 17 memenuhi kriteria inklusi. Hasil analisis menunjukkan bahwa konsumsi minyak Sacha Inchi menurunkan kolesterol total, LDL, dan trigliserida serta meningkatkan HDL melalui penghambatan enzim HMG-CoA reduktase, aktivasi PPAR-a, dan modulasi mikrobiota usus. Senyawa tokoferol dan polifenol juga berkontribusi terhadap efek antioksidan dan antiinflamasi melalui penekanan NF-KB, TNF-a, dan IL-6. Dengan demikian, Sacha Inchi memiliki potensi sebagai fitoterapi alami antihiperlipidemia yang aman dan berpotensi mendukung kesehatan kardiovaskular.
Potential of Sacha Inchi (Plukenetia volubilis L.) As an Antihyperlipidemia Agent: Systematic Literature Review
Abstract
Hyperlipidemia is a major risk factor for cardiovascular disease and is still a cause of high morbidity and mortality. Sacha Inchi (Plukenetia volubilis L.) contains omega-3 (ALA), omega-6 (LA), omega-9 (OA), as well as tocopherols and phytosterols that play a role in the regulation of lipid metabolism. This study aims to systematically review scientific evidence regarding the potential of Sacha Inchi as an antihyperlipidemia agent based on the results of in vitro, in vivo, and clinical trials published in the Scopus indexed journal for the period 2016–2025. The method used is Systematic Literature Review (SLR) with reference to the PRISMA 2020 guidelines and using the Scopus database. Of the 25 articles found, 17 met the inclusion criteria. The results of the analysis showed that the consumption of Sacha Inchi oil lowered total cholesterol, LDL, and triglycerides and increased HDL through inhibition of HMG-CoA reductase enzyme, activation of PPAR-a, and modulation of the gut microbiota. Tocopherol and polyphenol compounds also contribute to antioxidant and anti-inflammatory effects through the suppression of NF-kB, TNF-a, and IL-6. Thus, Sacha Inchi has the potential as a natural phytotherapy for antihyperlipidemia that is safe and has the potential to support cardiovascular health.
Downloads
References
Aguilar-Olano, J. L., Davila Paico, S., & Alvarez, C. P. (2025). Comparative study of the anti-inflammatory effect and acute toxicity of Sacha Inchi oils (Plukenetia volubilis and Plukenetia huayllabambana) in mice. Frontiers in Immunology, 16. https://doi.org/10.3389/fimmu.2025.1641344
Alayon, A. N., Ortega-Ávila, J. G., & Echeverri Jiménez, I. (2019). Metabolic status is related to the effects of adding of sacha inchi (Plukenetia volubilis L.) oil on postprandial inflammation and lipid profile: Randomized, crossover clinical trial. Journal of Food Biochemistry, 43(2). https://doi.org/10.1111/jfbc.12703
Ambulay, J. P., Rojas, P. A., Timoteo, O. S., Barreto, T. V, Vila, Z. N., de Los Santos, M. B., Eguiluz, M., & Colarossi, A. (2021). Oil emulsion from Plukenetia huayllabambana (Sacha inchi) modifies nitric oxide and leptin in the liver and antioxidant and inflammation markers in the adipose tissue in obese rats. Functional Foods in Health and Disease, 11(3), 92–103. https://doi.org/10.31989/FFHD.V11I3.778
Aparecida, R., Soares, M., Mendonça, S., Ívini, L., & Castro, A. De. (2015). Major Peptides from Amaranth ( Amaranthus cruentus ) Protein Inhibit HMG-CoA Reductase Activity. 4150–4160. https://doi.org/10.3390/ijms16024150
Apriana, N. R., Bialangi, N., Alio, L., & Salimi, Y. K. (2025). Identifikasi Senyawa Metabolit Sekunder dan Analisis Total Fenolik Ekstrak Metanol Daun Sacha Inchi ( Plukenetia volubilis linneo ) yang Tumbuh di Gorontalo.
Arias, P. I., Ferrero-Del-Teso, S., Sáenz-Navajas, M. P., Fernández-Zurbano, P., Lacau, B., Astraín, J., Barón, C., Ferreira, V., & Escudero, A. (2020). Some clues about the changes in wine aroma composition associated to the maturation of “neutral” grapes. Food Chemistry, 320, 126610. https://doi.org/10.1016/j.foodchem.2020.126610
Badgett, M. J., Boyes, B., & Orlando, R. (2018). Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 1537, 58–65. https://doi.org/10.1016/j.chroma.2017.12.055
Bocanegra, M. N., & Galeano, G. P. (2023). Chemical Composition, Fatty Acid Profile, and Optimization of the Sacha Inchi (Plukenetia volubilis L.) Seed-Roasting Process Using Response Surface Methodology: Assessment of Oxidative Stability and Antioxidant Activity. Foods, 12(18), 3405. https://doi.org/10.3390/foods12183405
Chan, Y.-J., Chiu, C.-S., Li, P.-H., & Lu, W.-C. (2024). Evaluation of different roasting condition on yield, physico-chemical characteristics, and antioxidant activity of cold-pressed sacha inchi (Plukenetia volubilis) oil. LWT, 203, 116343. https://doi.org/10.1016/j.lwt.2024.116343
Chasquibol, N. A., Gallardo, G., Gómez-Coca, R. B., Trujillo, D., Moreda, W., & Pérez-Camino, M. C. (2019). Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) Edible Oils. Foods, 8(12), 671. https://doi.org/10.3390/foods8120671
Chirinos, R., Necochea, O., Pedreschi, R., & Campos, D. (2016). Sacha inchi ( Plukenetia volubilis L.) shell: an alternative source of phenolic compounds and antioxidants. International Journal of Food Science & Technology, 51(4), 986–993. https://doi.org/10.1111/ijfs.13049
Couedelo, L., Buaud, B., Abrous, H., Chamekh-coelho, I., Majou, D., & Boue-vaysse, C. (2022). Effect of increased levels of dietary a-linolenic acid on the n-3 PUFA bioavailability and oxidative stress in rat. 1320–1333. https://doi.org/10.1017/S0007114521002294
Debaux, J. V., Hammed, A., Barbier, B., Chetot, T., Benoit, E., Lefebvre, S., & Lattard, V. (2019). Establishment of the Variation of Vitamin K Status According to Vkorc1 Point Mutations Using Rat Models. Nutrients, 11(9), 2076. https://doi.org/10.3390/nu11092076
Deng, Y., Li, W., Zhang, Y., Li, J., He, F., Dong, K., Hong, Z., Luo, R., & Pei, X. (2023). a-Linolenic Acid Inhibits RANKL-Induced Osteoclastogenesis In Vitro and Prevents Inflammation In Vivo. Foods, 12(3), 682. https://doi.org/10.3390/foods12030682
En, C. Y., Binti Udin, N. A., Vanoh, D. A., & Leng, S. K. (2024). Effect of Sacha Inchi Oil on Human Blood Pressure and Lipid Profile: A Preliminary Study in Malaysia. Jurnal Gizi Dan Pangan, 19(1), 61–68. https://doi.org/10.25182/jgp.2024.19.1.61-68
Ferreira, N. R., de Moura Sarquis, M. I., Gobira, R. M., da Silva Souza, M. G., & Santos, A. S. (2019). The multivariate statistical selection of fungal strains isolated from Neoteredo reynei, with the high hydrolytic potential to deconstruct cellulose. Food Research International, 122, 402–410. https://doi.org/10.1016/j.foodres.2019.04.019
Garavand, F., Jafarzadeh, S., Cacciotti, I., Vahedikia, N., Sarlak, Z., Tarhan, Ö., Yousefi, S., Rouhi, M., Castro-Muñoz, R., & Jafari, S. M. (2022). Different strategies to reinforce the milk protein-based packaging composites. Trends in Food Science & Technology, 123, 1–14. https://doi.org/10.1016/j.tifs.2022.03.004
Giang, H., Nghia, N. C., Son, C. K., Ha, H. P., Minh, B. Q., Huong, L. Q., Phuc, L. T., Tuan, H. Q., Son, V. H., Trang, V. T., Chu-Ky, C. K., Ha, H. P., Bui, B. Q., Huong, L. Q., Phuc, L. T., Tuan, H. Q., Son, V. H., & Trang, V. T. (2025). Property Changes in Production of Hybrid Fresh Cheese Rich in Polyunsaturated Fatty Acids from Sacha Inchi (Plukenetia volubilis) Oil. Processes, 13(7), 1–17. https://doi.org/10.3390/pr13071978
Gonzales, G. F., Tello, J., Zevallos-concha, A., Baquerizo, L., Caballero, L., Heredia, C., & Heredia, C. (2018). HHS Public Access. 28(2), 140–147. https://doi.org/10.1080/15376516.2017.1373880.Nitrogen
Grammatikaki, E., Wollgast, J., & Caldeira, S. (2021). High Levels of Nutrients of Concern in Baby Foods Available in Europe That Contain Sugar-Contributing Ingredients or Are Ultra-Processed. Nutrients, 13(9), 3105. https://doi.org/10.3390/nu13093105
Guo, L., Guo, S., Xu, J., He, L., Carlson, J. E., & Hou, X. (2020). Phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony. Industrial Crops and Products, 153, 112567. https://doi.org/10.1016/j.indcrop.2020.112567
Hoffman, L. C., van Schalkwyk, D. L., Muller, M., Needham, T., & McMillin, K. W. (2021). Carcass Yields and Physical-Chemical Meat Quality Characteristics of Namibian Red Hartebeest (Alcelaphus buselaphus) as Influenced by Sex and Muscle. Foods, 10(10), 2347. https://doi.org/10.3390/foods10102347
Kumadji, F., Rachman, agus bahar, & Bait, Y. (2025). Program Studi Teknologi Pangan, Fakultas Pertanian, Universitas Negeri Gorontalo. Jambura Journal of Educational Chemistry, 7(1), 63–85.
Li, P., Deng, J., Xiao, N., Cai, X., Wu, Q., Lu, Z., Yang, Y., & Du, B. (2020). Identification of polyunsaturated triacylglycerols and C[dbnd]C location isomers in sacha inchi oil by photochemical reaction mass spectrometry combined with nuclear magnetic resonance spectroscopy. Food Chemistry, 307. https://doi.org/10.1016/j.foodchem.2019.125568
Li, P., Huang, J., Xiao, N., Cai, X., Yang, Y., Deng, J., Zhang, L.-H., & Du, B. (2020). Sacha inchi oil alleviates gut microbiota dysbiosis and improves hepatic lipid dysmetabolism in high-fat diet-fed rats. Food & Function, 11(7), 5827–5841. https://doi.org/10.1039/D0FO01178A
Li, P., Xu, R., Shi, Y., Shi, X., Zhang, X., Li, J., & Kou, G. (2022). Luteolin increases slow muscle fibers via FLCN-AMPK-PGC-1a signaling pathway. Journal of Functional Foods, 88, 104876. https://doi.org/https://doi.org/10.1016/j.jff.2021.104876
Maya, I., Sriwidodo, S., Mita, S. R., Kusumawulan, C. K., Putriana, N. A., Amalia, E., Aulia, R. N., Sofyan, H. N., Dzulfannazhir, F., & Nugraha, M. H. (2024). Formulation and Evaluation of Facial Serum Containing Sacha Inchi Oil (Plukenetia volubilis L.) from Indonesia as an Anti-Aging: Stability, In Vitro, and Skin Irritation Assessments. Cosmetics, 11(6), 226. https://doi.org/10.3390/cosmetics11060226
Mhd Rodzi, N. A. R., Mohd Sopian, M., & Lee, L. K. (2025a). Effects of Sacha Inchi (Plukenetia volubilis L.) Oil Supplementation on Hyperglycaemia, Hypertension and Hyperlipidaemia (3Hs) Patients: A Preliminary Human Trial. Plant Foods for Human Nutrition, 80(1), 80. https://doi.org/10.1007/s11130-025-01309-8.
Rahman, I. Z., Nor Hisam, N. S., Aminuddin, A., Hamid, A. A., Kumar, J., & Ugusman, A. (2023). Evaluating the Potential of Plukenetia volubilis Linneo (Sacha Inchi) in Alleviating Cardiovascular Disease Risk Factors: A Mini Review. Pharmaceuticals, 16(11), 1588. https://doi.org/10.3390/ph16111588.
Rizky, F., Chaq, M., Chaq, E., Multazam, Z., Mustofa, A., & Socha, W. (2024). The 30 Years of Shifting in The Indonesian Cardiovascular Burden — Analysis of The Global Burden of Disease Study Global Burden of Disease. Journal of Epidemiology and Global Health, 193–212. https://doi.org/10.1007/s44197-024-00187-8
Suwanangul, S., Aluko, R. E., Sangsawad, P., Kreungngernd, D., & Ruttarattanamongkol, K. (2022). Antioxidant and enzyme inhibitory properties of sacha inchi (Plukenetia volubilis) protein hydrolysate and its peptide fractions. Journal of Food Biochemistry, 46(12). https://doi.org/10.1111/jfbc.14464
Torres-Sanchez, E., Lorca-Alonso, I., Gonzalez-de la Fuente, S., Hernandez-Ledesma, B., & Gutierrez, L.-F. (2024). Antioxidant Peptides from Sacha Inchi Meal: An In Vitro, Ex Vivo, and In Silico Approach. Foods, 13(23), 3924. https://doi.org/10.3390/foods13233924
Villamil, R. A., Romero, L. N., Ruiz, J. P., Patiño, D. C., Gutiérrez, L. F., & Cortés, L. Y. (2024). The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects. Foods, 13(23). https://doi.org/10.3390/foods13233973
Wang, M., Xiang, Y.-H., Liu, M., Jiang, S., Guo, J., Jin, X., Sun, H., Zhang, N., Wang, Z.-G., & Liu, J. (2024). The application prospects of sacha inchi (Plukenetia volubilis linneo) in rheumatoid arthritis. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1481272
Wijaya, D. C., Linawa, N. M., Dwipayana, I. M. P., & Winar, N. W. (2024). Effects of Sacha Inchi ( Plukene ’ a volubilis) Oil on Serum Interleukin 6 Levels and Foam Cell Count in Male Wistar Rats ( Ra0us norvegicus ) Fed a High Fat and Fructose Diet. 3(5), 978–990.
Wongmanee, N., Rojanaverawong, W., Boonsong, T., & Hanchang, W. (2024). Antihyperglycemic effect of extra virgin sacha inchi oil in type 2 diabetic rats: Mechanisms involved in pancreatic B-cell function and apoptosis. Journal of Traditional and Complementary Medicine, 14(2), 148–161. https://doi.org/10.1016/j.jtcme.2023.08.005
Wu, K., Gong, W., Lin, S., Huang, S., Mu, H., Wang, M., Sheng, J., & Zhao, C. (2024). Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1354486
Yin, S., Xu, H., Xia, J., Lu, Y., Xu, D., Sun, J., Wang, Y., Liao, W., & Sun, G. (2023). Effect of Alpha-Linolenic Acid Supplementation on Cardiovascular Disease Risk Pro fi le in Individuals with Obesity or Overweight: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Advances in Nutrition, 14(6), 1644–1655. https://doi.org/10.1016/j.advnut.2023.09.010
Zhang, L., Xu, J., Yuan, L., Yin, X., Li, Y., & Qin, L. (2022). Protective effects of epigallocatechin 3 o gallate combined with organic selenium against transforming growth factor beta 1 induced fibrosis in 2 cells. Journal of Food Biochemistry, 46(9). https://doi.org/10.1111/jfbc.14223
Zitouni, M., Wewer, V., Dörmann, P., Abdelly, C., & Ben Youssef, N. (2016). Quadrupole time-of-flight mass spectrometry analysis of glycerophospholipid molecular species in the two halophyte seed oils: Eryngium maritimum and Cakile maritima. Food Chemistry, 213, 319–328. https://doi.org/10.1016/j.foodchem.2016.06.083.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alya Fatiha Rahma, Septiana Indratmoko, Elisa Issusilaningtyas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Empiricism Journal agree to the following terms:
- For all articles published in Empiricism Journal, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.