Analisis Sentimen Rakyat Brunei Terhadap Siaran Halaman ‘Brunei Fm’ Yang Bertajuk ‘Kes Pertama #Covid-19 Di Negara Brunei Darussalam'
DOI:
https://doi.org/10.36312/ijlic.v3i2.2022Keywords:
Sentiment Analysis, COVID-19, Facebook, BruneiAbstract
The COVID-19 pandemic has significantly impacted global societies, prompting widespread discussions on social media platforms. This study examines the sentiments expressed in Facebook comments by Bruneians regarding the first COVID-19 case in Negara Brunei Darussalam. Despite COVID-19 no longer being a global concern, understanding public sentiment during such crises remains critical for example, for future public health responses. Using a manual sentiment analysis approach, 50 comments from the post’s on ‘Brunei FM’ Facebook page were analyzed to categorize them into positive, negative, and neutral sentiments. The analysis revealed that 54% of the comments were negative, expressing fear, criticism, and blame, while 26% were positive, reflecting hope, support for health measures, and sympathy. The remaining 20% were neutral, focusing on information sharing and advice. This research aims to contribute to the field of manual sentiment analysis by providing a detailed examination of public reactions during a health crisis. The findings underscore the importance of effective communication strategies, community engagement, and responsive policy-making to address public concerns and enhance resilience during future health emergencies.
Downloads
References
Akmalia, R. A., Slamet, I., & Pratiwi, H. (2022). Analisis sentimen Twitter berbahasa
Indonesia terhadap aplikasi PeduliLindungi dengan algoritma SVM, KNN, dan regresi logistik. *Prosiding Seminar Nasional MIPA UNIPA*, 7, 134-144. https://doi.org/10.31219/osf.io/j3kq9
Anshor, A., & Safuwan, A. (2023). Analisis sentimen opini warganet Twitter terhadap
tes screening GeNose pendeteksi virus COVID-19 menggunakan metode Naïve Bayes berbasis particle swarm optimization. *Jurnal Informatika Teknologi dan Sains*, 6(1), 55-64. https://doi.org/10.23960/jits.v6i1.345
Arham, A., Swedia, E. R., Cahyanti, M., Ridwan, M., & Septian, D. (2022).
Implementasi sentiment analysis pada opini masyarakat Indonesia di Twitter terhadap virus COVID-19 varian Omicron dengan algoritma Naïve Bayes, Decision Tree, dan Support Vector Machine. *Sebatik*, 25(2), 73-84. https://doi.org/10.32604/sebatik.2022.034581
Asnola, W. and Zulkiflee, Z. (2021), "Diskriminasi Kaum Di Negara Brunei
Darussalam Dalam Situasi Pandemik Gelombang Kedua COVID-19", Southeast Asia: A Multidisciplinary Journal, Vol. 21 No. 2, pp. 118-137. https://doi.org/10.1108/SEAMJ-02-2021-B1008
Boon-Itt, S. (2020). A text-mining analysis of public perceptions and topic modeling
during the COVID-19 pandemic using Twitter data. *JMIR Public Health and Surveillance*, 6(2), e18841. https://doi.org/10.2196/18841
Boon-Itt, S., & Skunkan, Y. (2020). Public perception of the COVID-19 pandemic on
Twitter: Sentiment analysis and topic modeling study. *JMIR Public Health and Surveillance*, 6(4), e21978. https://doi.org/10.2196/21978
Catapang, J. K., & Cleofas, J. V. (2021). Topic modeling, clade-assisted sentiment
analysis, and vaccine brand reputation analysis of COVID-19 vaccine-related Facebook comments in the Philippines. *2022 IEEE 16th International Conference on Semantic Computing (ICSC)*. https://doi.org/10.1109/ICSC52960.2021.00099
Cepeda, K., & Jaiswal, R. (2022). Sentiment analysis on COVID-19 vaccinations in
Ireland using support vector machine. *2022 33rd Irish Signals and Systems Conference (ISSC)*. https://doi.org/10.1109/ISSC54116.2022.9787224
Chairunnisa, Q. A., Herdiyeni, Y., Hardhienata, M. K. D., & Adisantoso, J. (2022).
Analisis sentimen pengguna Twitter terhadap program vaksinasi Covid-19 di Indonesia menggunakan algoritme support vector machine. *Jurnal Ilmu Komputer dan Agri-Informatika*, 7(2), 65-74. https://doi.org/10.23960/jik.v7i2.3456
Chitra, K., Tamilarasi, A., Hemalatha, S., Madhumitha, T., Keerthana, P., & Dharani,
S. G. (2022). Sentiment analysis on COVID-19 vaccine. *2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC)*. https://doi.org/10.1109/ICESC53455.2022.9815250
Elmy Maswandi, Zulfadzlee Zulkiflee, & Wafiqah Asnola. (2022). ANALISIS
PERISTIWA TUTUR MODEL SPEAKING HYMES (1972) DALAM SIDANG MEDIA COVID-19 NEGARA BRUNEI DARUSSALAM: ANALYSIS OF SPEECH EVENTS USING THE HYMES (1972) SPEAKING MODEL IN COVID-19 PRESS CONFERENCES OF BRUNEI DARUSSALAM. Jurnal Pengajian Melayu (JOMAS), 33(1), 39–54. Retrieved from https://ijie.um.edu.my/index.php/JPM/article/view/36429
Fakieh, B., Al-Malaise Al-Ghamdi, A. S., Saleem, F., & Ragab, M. (2023). Optimal
machine learning driven sentiment analysis on COVID-19 Twitter data. *Computers, Materials & Continua*, 74(1), 283-298. https://doi.org/10.32604/cmc.2023.034194
Fathonah, F., & Herliana, A. (2021). Penerapan text mining analisis sentimen
mengenai vaksin Covid-19 menggunakan metode Naïve Bayes. *Jurnal Sains dan Informatika*, 7(2), 171-177. https://doi.org/10.32896/jsi.v7i2.348
Feizollah, A., Anuar, N. B., Mehdi, R., Firdaus, A., & Sulaiman, A. (2022).
Understanding COVID-19 halal vaccination discourse on Facebook and Twitter using aspect-based sentiment analysis and text emotion analysis. *International Journal of Environmental Research and Public Health*. https://doi.org/10.3390/ijerph19052536
Himawan, R. D., & Eliyani, E. (2021). Perbandingan akurasi analisis sentimen tweet
terhadap pemerintah Provinsi DKI Jakarta di masa pandemi. *Jurnal Edukasi dan Penelitian Informatika (JEPIN)*, 7(1), 39-48. https://doi.org/10.33319/jepin.v7i1.72
Hussain, A., Tahir, A., Hussain, Z., Sheikh, Z., Gogate, M., Dashtipour, K., Ali, A., &
Sheikh, A. (2020). Artificial Intelligence-enabled analysis of UK and US public attitudes on Facebook and Twitter towards COVID-19 vaccinations. *Med. Public and Global Health*.
Ibrahim, S., Ab Rahim, N. Z., Fatihan, F. I., & Abu Bakar, N. A. (2021). COVID-19
sentiment analysis on Facebook comments. *International Journal of Modern Trends in Social Sciences*.
Karagkiozidou, M., Koukaras, P., & Tjortjis, C. (2022). Sentiment analysis on COVID-
Twitter data: A sentiment timeline. *Artificial Intelligence Applications and Innovations*, 584-596. https://doi.org/10.1007/978-3-030-85763-4_50
Liu, B. (2015). *Sentiment analysis: Mining opinions, sentiments, and emotions*.
Cambridge University Press. https://doi.org/10.1017/CBO9781139084789
Luo, T., Li, R., Sun, Z., Tao, F., Kumar, M., & Li, C. (2022). Let the big data speak:
Collaborative model of topic extract and sentiment analysis COVID-19 based on Weibo data. *International Conference on Adaptive and Intelligent Systems (ICAIS)*. https://doi.org/10.1007/978-3-030-85759-7_9
Lyu, J., Han, E., & Luli, G. K. (2021). COVID-19 vaccine–related discussion on Twitter:
Topic modeling and sentiment analysis. *Journal of Medical Internet Research*, 23(6), e24435. https://doi.org/10.2196/24435
Muhammad, S. H. (2019). An overview of sentiment analysis approaches. In MAP-i
Seminar Proceedings (pp. 65-70).
Nurhazizah, E., Ichsan, R. N., & Widiyanesti, S. (2022). Analisis sentimen dan jaringan
sosial pada penyebaran informasi vaksinasi di Twitter. *Swabumi*, 7(1), 55-64. https://doi.org/10.31219/osf.io/xyk39
Patel, J. (2023). Sentiment analysis on COVID-19 related tweets. *Paripex Indian
Journal of Research*, 12(1), 50-55. https://doi.org/10.36106/paripex/8403084
Ragothaman, A., & Huang, C. (2021). Sentiment analysis on COVID-19 Twitter data.
*International Journal of Computer Theory and Engineering*, 13(1), 17-23. https://doi.org/10.7763/IJCTE.2021.V13.1289
Sani, F. A., & Damit, A. R. (2024). Analisis Bahasa Kesat dalam Ruang Komen
Borneo Bulletin berkaitan gelombang kedua Covid-19 di Negara Brunei Darussalam.International Journal of Linguistics and Indigenous Culture,2(1), 1–21. https://doi.org/10.36312/ijlic.v2i1.1725
Shiddicky, A., & Agustian, S. (2022). Analisis sentimen masyarakat terhadap
kebijakan vaksinasi Covid-19 pada media sosial Twitter menggunakan metode logistic regression. *Jurnal Coscitech (Computer Science and Information Technology)*, 7(1), 67-75. https://doi.org/10.32604/cmc.2022.029149
Sulaiman, E., & Suhaimi, M. E. M. (2020). Analisis Neologisme: COVID-19 di Negara
Brunei Darussalam: Analysis of Neologism: COVID 19 in Brunei Darussalam. PENDETA, 11, 58–79. https://doi.org/10.37134/pendeta.vol11.edisikhas.5.2020
Taboada, M. (2016). Sentiment analysis: An overview from linguistics. *Annual
Review of Linguistics*, *2*(1), 325-347. https://doi.org/10.1146/annurev-linguist-030514-124759
Tri Sakti, A. M., Mohamad, E., & Azlan, A. A. (2021). Mining of opinions on COVID-
large-scale social restrictions in Indonesia: Public sentiment and emotion analysis on online media. *Journal of Medical Internet Research*. https://doi.org/10.2196/27941
Wankhade, M., & Rao, A. C. S. (2022). Opinion analysis and aspect understanding
during COVID-19 pandemic using BERT-Bi-LSTM ensemble method. *Scientific Reports*, *12*, 17095. https://doi.org/10.1038/s41598-022-21604-7 Sani, F. A., & Damit, A. R. (2024). Analisis Bahasa Kesat dalam Ruang Komen Borneo Bulletin berkaitan gelombang kedua Covid-19 di Negara Brunei Darussalam.International Journal of Linguistics and Indigenous Culture,2(1), 1–21. https://doi.org/10.36312/ijlic.v2i1.1725
Wati, R., & Ernawati, S. (2021). Analisis sentimen persepsi publik mengenai PPKM
pada Twitter berbasis SVM menggunakan Python. *Jurnal Teknik Informatika Unika Santo Thomas*, 7(2), 97-104. https://doi.org/10.26555/ijain.v3i2.5587
Zulkiflee, Z. (2022). Ragam Bahasa Komen Instagram Berkaitan Berita Palsu Situasi
Gelombang Kedua Pandemik COVID-19: Language Variation Regarding Fake News During COVID-19 2nd Wave in Instagram Comments. PENDETA, 13(1), 22–32. https://doi.org/10.37134/pendeta.vol13.1.3.2022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nurul Fazliana Fatin Muhammad Morshiddi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the International Journal of Linguistics and Indigenous Culture (IJLIC) agree to the following terms:
- For all articles published in International Journal of Linguistics and Indigenous Culture (IJLIC), copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.