Estimated Population Abundance of a Bat (Chiroptera) Colony at the Batukoq Water Channel Cave, Senaru, North Lombok

Authors

  • Fatuh Rahman Universitas Muhammadiyah Mataram
  • Joni Safaat Adiansyah Universitas Muhammadiyah Mataram
  • Sukuryadi Universitas Muhammadiyah Mataram
  • Ilham M Akbar Universitas Muhammadiyah Mataram

DOI:

https://doi.org/10.36312/c4zmnb72

Keywords:

Cave-roosting bats, Flight-line census, Population abundance, Emergence dynamics, Counting bias (overlap)

Abstract

Cave-roosting bats are highly exposed to disturbance because roost entrances are predictable and accessible, yet local management often lacks baseline population information. This study examines a cave-associated roost system in Batukoq, Senaru (North Lombok) and aims to provide a site-specific colony abundance estimate, describe emergence dynamics during the counting window, and identify the main sources of counting bias under field conditions relevant to low-resource monitoring. A Flight Line Census based on direct visual observation was implemented without thermal sensors or night-vision devices, conducted during critical movement periods (dusk and dawn) and restricted to a single large colony site to minimize cross-site variability. The colony’s mean estimated abundance was approximately ±590 individuals per night, indicating that Batukoq functions as a key day roost. Visual observations suggested two major groups (Megachiroptera and Microchiroptera) using different flight corridors, and emergence was brief (about 30–45 minutes) with an early peak period that is most sensitive to counting error. The dominant limitation was flight-path overlap under high density and low light, which tends to produce underestimation; therefore, abundance values should be treated as conservative and supported by repeated counts across multiple nights and time windows. These results support the continued use of visual flight-line counts as a non-invasive baseline method, provided that procedural standardization is emphasized and roost disturbance is reduced as a practical conservation priority.

References

Aguiar, L. M. S., Bueno-Rocha, I. R., Oliveira, G. A., Pires, E. S., Vasconcelos, S. D., Nunes, G. H. S., & Togni, P. H. B. (2021). Going out for dinner: The consumption of agricultural pests by bats in urban areas. PLOS ONE, 16(10), e0258066. https://doi.org/10.1371/journal.pone.0258066

Andrews, M. M., & Andrews, P. (2016). Greater horseshoe bat (Rhinolophus ferrumequinum) ultrasound calls outside a nursery roost indicate social interaction not light sampling. Mammal Communications, 2. https://doi.org/10.59922/cszl4715

Anonim. (1989). Mammals of the Indo-Australian Archipelago. Academic Press.

Azmy, S. N., Sah, S. A. M., Shafie, N. J., Ariffin, A., Majid, Z., Ismail, M., & Shamsir, M. S. (2012). Counting in the dark: Non-intrusive laser scanning for population counting and identifying roosting bats. Scientific Reports, 2, 524. https://doi.org/10.1038/srep00524

Betke, M., Hirsh, D. E., Makris, N. C., McCracken, G. F., Procopio, M., Hristov, N. I., Kunz, T. H. (2008). Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. Journal of Mammalogy, 89(1), 18–24. https://doi.org/10.1644/07-MAMM-A-011.1

Bolívar-Cimé, B., Cuxim-Koyoc, A., Reyes-Novelo, E., Morales-Malacara, J., Laborde, J., & Flores-Peredo, R. (2017). Habitat fragmentation and parasite prevalence on three phyllostomid bat species. Biotropica, 50(1), 90–97. https://doi.org/10.1111/btp.12489

Cryan, P. M., Gorresen, P. M., Hein, C. D., Schirmacher, M. R., Diehl, R. H., Huso, M. M. P., Dalton, D. C. (2014). Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences, 111(42), 15126–15131. https://doi.org/10.1073/pnas.1406672111

Debata, S. (2020). Bats in a cave tourism and pilgrimage site in eastern India: Conservation challenges. Oryx, 55(5), 684–691. https://doi.org/10.1017/S003060531900098X

Deleva, S., Toshkova, N., Kolev, M., & Tanalgo, K. (2023). Important underground roosts for bats in Bulgaria: Current state and priorities for conservation. Biodiversity Data Journal, 11, e98734. https://doi.org/10.3897/bdj.11.e98734

Fajri, S., Idrus, A., & Hadiprayitno, G. (2014). Kekayaan spesies kelelawar ordo Chiroptera di gua wilayah selatan Pulau Lombok. Bioedukasi Jurnal Pendidikan Biologi, 7(2), 5–13. https://doi.org/10.20961/bioedukasi-uns.v7i2.2926

Furey, N. M., & Racey, P. A. (2016). Can wing morphology inform conservation priorities for Southeast Asian cave bats? Biotropica, 48(4), 545–556. https://doi.org/10.1111/btp.12322

Frick, W. F., Kingston, T., & Flanders, J. (2019). A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469(1), 5–25.

https://doi.org/10.1111/nyas.14045

García-Morales, R., Moreno, C. E., Badano, E. I., & Zuria, I. (2016). The role of bats in tropical forest regeneration. Biological Conservation, 202, 132–140.

Hristov, N. I., Betke, M., & Kunz, T. H. (2008). Applications of thermal infrared imaging for research in aeroecology. Integrative and Comparative Biology, 48(1), 50–59. https://doi.org/10.1093/icb/icn053

Henley, J. E., et al. (2024). Standardizing emergence counts for bat population monitoring. Journal of Applied Ecology.

Huzzen, B. J., Hale, A. M., & Bennett, V. J. (2020). An effective survey method for studying volant species activity at tall structures. PeerJ, 8, e8438. https://doi.org/10.7717/peerj.8438

Kingston, T. (2008). Bat ecology and conservation in Southeast Asia: Challenges and future directions. Mammal Review, 38(1), 1–14.

Kingston, T. (2015). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38.

Kemp, J., López-Baucells, A., Rocha, R., Wangensteen, O. S., Andriatafika, Z., Nair, A., & Cabeza, M. (2019). Bats as providers of ecosystem services. Biological Reviews, 94(3), 1141–1165.

https://doi.org/10.1111/brv.12486

Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38.

https://doi.org/10.1111/j.1749-6632.2011.06004.x

Kloepper, L. N., Linnenschmidt, M., Blowers, Z., Branstetter, B., Ralston, J., & Simmons, J. A. (2016). Estimating colony sizes of emerging bats using acoustic recordings. Royal Society Open Science, 3(3), 160022. https://doi.org/10.1098/rsos.160022

Leivers, S. J., Meierhofer, M. B., Pierce, B. L., Evans, J. W., & Morrison, M. L. (2019). Microclimates of cave- and culvert-roosting bats. Ecology and Evolution, 9(24), 14042–14052. https://doi.org/10.1002/ece3.5841

McKee, C. D., Islam, A., Luby, S. P., Salje, H., Hudson, P. J., Plowright, R. K., & Gurley, E. S. (2021). The ecology of Nipah virus in Bangladesh. Viruses, 13(2), 169. https://doi.org/10.3390/v13020169

Nsengimana, O., Walker, F. M., Webala, P. W., Twizeyimana, I., Dusabe, M., Sanchez, D., & Medellín, R. A. (2023). Understanding ecosystem services provided by insectivorous bats in Rwanda. PLOS ONE, 18(6), e0287536. https://doi.org/10.1371/journal.pone.0287536

Paksuz, S., & Özkan, B. (2012). Protection of bat communities following cave tourism development. Oryx, 46(1), 130–136. https://doi.org/10.1017/S0030605310001493

Phelps, K. L., Jose, R., Labonite, M. J., & Kingston, T. (2016). Correlates of cave-roosting bat diversity. Biological Conservation, 201, 201–209. https://doi.org/10.1016/j.biocon.2016.06.023

Pretorius, M. D., Markotter, W., & Keith, M. (2021). Assessing land-use change around bat-inhabited caves. BMC Zoology, 6, 1–13. https://doi.org/10.1186/s40850-021-00095-5

Ramírez-Fráncel, L. A., García-Herrera, L. V., Losada-Prado, S., & Sánchez-Londoño, J. D. (2021). Bats and their ecosystem services in Neotropical landscapes. Mammal Review, 51(2), 1–17.

https://doi.org/10.1111/mam.12232

Shapiro, H., Willcox, A., Verant, M., & Willcox, E. (2021). How white-nose syndrome changed cave management. Wildlife Society Bulletin, 45(3), 422–429. https://doi.org/10.1002/wsb.1208

Yani, D., & Yuliyantika, W. (2019). Comparative anatomy of digestive organs in fruit- and insect-eating bats. Proceedings of the International Conference on Science and Engineering, 2, 37–40. https://doi.org/10.14421/icse.v2.51

Yarbrough, J. D., Cunitz, I., Schipper, J., Lawson, M., Straw, B., Hein, C. D., & Cryan, P. M. (2023). Detecting animals flying near wind turbines using thermal surveillance and deep learning. bioRxiv. https://doi.org/10.1101/2023.02.26.530152

Downloads

Published

2025-12-01

Issue

Section

Articles

How to Cite

Rahman, F. ., Adiansyah, J. S. ., Sukuryadi, S., & Akbar, I. . M. . (2025). Estimated Population Abundance of a Bat (Chiroptera) Colony at the Batukoq Water Channel Cave, Senaru, North Lombok. Reflection Journal, 5(2), 1181-1192. https://doi.org/10.36312/c4zmnb72

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.