Estimated Population Abundance of a Bat (Chiroptera) Colony at the Batukoq Water Channel Cave, Senaru, North Lombok
DOI:
https://doi.org/10.36312/c4zmnb72Keywords:
Cave-roosting bats, Flight-line census, Population abundance, Emergence dynamics, Counting bias (overlap)Abstract
Cave-roosting bats are highly exposed to disturbance because roost entrances are predictable and accessible, yet local management often lacks baseline population information. This study examines a cave-associated roost system in Batukoq, Senaru (North Lombok) and aims to provide a site-specific colony abundance estimate, describe emergence dynamics during the counting window, and identify the main sources of counting bias under field conditions relevant to low-resource monitoring. A Flight Line Census based on direct visual observation was implemented without thermal sensors or night-vision devices, conducted during critical movement periods (dusk and dawn) and restricted to a single large colony site to minimize cross-site variability. The colony’s mean estimated abundance was approximately ±590 individuals per night, indicating that Batukoq functions as a key day roost. Visual observations suggested two major groups (Megachiroptera and Microchiroptera) using different flight corridors, and emergence was brief (about 30–45 minutes) with an early peak period that is most sensitive to counting error. The dominant limitation was flight-path overlap under high density and low light, which tends to produce underestimation; therefore, abundance values should be treated as conservative and supported by repeated counts across multiple nights and time windows. These results support the continued use of visual flight-line counts as a non-invasive baseline method, provided that procedural standardization is emphasized and roost disturbance is reduced as a practical conservation priority.
References
Aguiar, L. M. S., Bueno-Rocha, I. R., Oliveira, G. A., Pires, E. S., Vasconcelos, S. D., Nunes, G. H. S., & Togni, P. H. B. (2021). Going out for dinner: The consumption of agricultural pests by bats in urban areas. PLOS ONE, 16(10), e0258066. https://doi.org/10.1371/journal.pone.0258066
Andrews, M. M., & Andrews, P. (2016). Greater horseshoe bat (Rhinolophus ferrumequinum) ultrasound calls outside a nursery roost indicate social interaction not light sampling. Mammal Communications, 2. https://doi.org/10.59922/cszl4715
Anonim. (1989). Mammals of the Indo-Australian Archipelago. Academic Press.
Azmy, S. N., Sah, S. A. M., Shafie, N. J., Ariffin, A., Majid, Z., Ismail, M., & Shamsir, M. S. (2012). Counting in the dark: Non-intrusive laser scanning for population counting and identifying roosting bats. Scientific Reports, 2, 524. https://doi.org/10.1038/srep00524
Betke, M., Hirsh, D. E., Makris, N. C., McCracken, G. F., Procopio, M., Hristov, N. I., Kunz, T. H. (2008). Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. Journal of Mammalogy, 89(1), 18–24. https://doi.org/10.1644/07-MAMM-A-011.1
Bolívar-Cimé, B., Cuxim-Koyoc, A., Reyes-Novelo, E., Morales-Malacara, J., Laborde, J., & Flores-Peredo, R. (2017). Habitat fragmentation and parasite prevalence on three phyllostomid bat species. Biotropica, 50(1), 90–97. https://doi.org/10.1111/btp.12489
Cryan, P. M., Gorresen, P. M., Hein, C. D., Schirmacher, M. R., Diehl, R. H., Huso, M. M. P., Dalton, D. C. (2014). Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences, 111(42), 15126–15131. https://doi.org/10.1073/pnas.1406672111
Debata, S. (2020). Bats in a cave tourism and pilgrimage site in eastern India: Conservation challenges. Oryx, 55(5), 684–691. https://doi.org/10.1017/S003060531900098X
Deleva, S., Toshkova, N., Kolev, M., & Tanalgo, K. (2023). Important underground roosts for bats in Bulgaria: Current state and priorities for conservation. Biodiversity Data Journal, 11, e98734. https://doi.org/10.3897/bdj.11.e98734
Fajri, S., Idrus, A., & Hadiprayitno, G. (2014). Kekayaan spesies kelelawar ordo Chiroptera di gua wilayah selatan Pulau Lombok. Bioedukasi Jurnal Pendidikan Biologi, 7(2), 5–13. https://doi.org/10.20961/bioedukasi-uns.v7i2.2926
Furey, N. M., & Racey, P. A. (2016). Can wing morphology inform conservation priorities for Southeast Asian cave bats? Biotropica, 48(4), 545–556. https://doi.org/10.1111/btp.12322
Frick, W. F., Kingston, T., & Flanders, J. (2019). A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469(1), 5–25.
https://doi.org/10.1111/nyas.14045
García-Morales, R., Moreno, C. E., Badano, E. I., & Zuria, I. (2016). The role of bats in tropical forest regeneration. Biological Conservation, 202, 132–140.
Hristov, N. I., Betke, M., & Kunz, T. H. (2008). Applications of thermal infrared imaging for research in aeroecology. Integrative and Comparative Biology, 48(1), 50–59. https://doi.org/10.1093/icb/icn053
Henley, J. E., et al. (2024). Standardizing emergence counts for bat population monitoring. Journal of Applied Ecology.
Huzzen, B. J., Hale, A. M., & Bennett, V. J. (2020). An effective survey method for studying volant species activity at tall structures. PeerJ, 8, e8438. https://doi.org/10.7717/peerj.8438
Kingston, T. (2008). Bat ecology and conservation in Southeast Asia: Challenges and future directions. Mammal Review, 38(1), 1–14.
Kingston, T. (2015). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38.
Kemp, J., López-Baucells, A., Rocha, R., Wangensteen, O. S., Andriatafika, Z., Nair, A., & Cabeza, M. (2019). Bats as providers of ecosystem services. Biological Reviews, 94(3), 1141–1165.
https://doi.org/10.1111/brv.12486
Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38.
https://doi.org/10.1111/j.1749-6632.2011.06004.x
Kloepper, L. N., Linnenschmidt, M., Blowers, Z., Branstetter, B., Ralston, J., & Simmons, J. A. (2016). Estimating colony sizes of emerging bats using acoustic recordings. Royal Society Open Science, 3(3), 160022. https://doi.org/10.1098/rsos.160022
Leivers, S. J., Meierhofer, M. B., Pierce, B. L., Evans, J. W., & Morrison, M. L. (2019). Microclimates of cave- and culvert-roosting bats. Ecology and Evolution, 9(24), 14042–14052. https://doi.org/10.1002/ece3.5841
McKee, C. D., Islam, A., Luby, S. P., Salje, H., Hudson, P. J., Plowright, R. K., & Gurley, E. S. (2021). The ecology of Nipah virus in Bangladesh. Viruses, 13(2), 169. https://doi.org/10.3390/v13020169
Nsengimana, O., Walker, F. M., Webala, P. W., Twizeyimana, I., Dusabe, M., Sanchez, D., & Medellín, R. A. (2023). Understanding ecosystem services provided by insectivorous bats in Rwanda. PLOS ONE, 18(6), e0287536. https://doi.org/10.1371/journal.pone.0287536
Paksuz, S., & Özkan, B. (2012). Protection of bat communities following cave tourism development. Oryx, 46(1), 130–136. https://doi.org/10.1017/S0030605310001493
Phelps, K. L., Jose, R., Labonite, M. J., & Kingston, T. (2016). Correlates of cave-roosting bat diversity. Biological Conservation, 201, 201–209. https://doi.org/10.1016/j.biocon.2016.06.023
Pretorius, M. D., Markotter, W., & Keith, M. (2021). Assessing land-use change around bat-inhabited caves. BMC Zoology, 6, 1–13. https://doi.org/10.1186/s40850-021-00095-5
Ramírez-Fráncel, L. A., García-Herrera, L. V., Losada-Prado, S., & Sánchez-Londoño, J. D. (2021). Bats and their ecosystem services in Neotropical landscapes. Mammal Review, 51(2), 1–17.
https://doi.org/10.1111/mam.12232
Shapiro, H., Willcox, A., Verant, M., & Willcox, E. (2021). How white-nose syndrome changed cave management. Wildlife Society Bulletin, 45(3), 422–429. https://doi.org/10.1002/wsb.1208
Yani, D., & Yuliyantika, W. (2019). Comparative anatomy of digestive organs in fruit- and insect-eating bats. Proceedings of the International Conference on Science and Engineering, 2, 37–40. https://doi.org/10.14421/icse.v2.51
Yarbrough, J. D., Cunitz, I., Schipper, J., Lawson, M., Straw, B., Hein, C. D., & Cryan, P. M. (2023). Detecting animals flying near wind turbines using thermal surveillance and deep learning. bioRxiv. https://doi.org/10.1101/2023.02.26.530152
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Fatuh Rahman, Joni Safaat Adiansyah, Sukuryadi, Ilham M Akbar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
