Effect of Microcrystalline Cellulose in the Extrusion-Spheronisation Process of Microparticulate-Making Technology: A Systematic Review.


  • Rahmat Santoso Faculty of Pharmacy, Bhakti Kencana University
  • Garnadi Jafar Faculty of Pharmacy, Bhakti Kencana University
  • Evi Ulfah Hayati Faculty of Pharmacy, Bhakti Kencana University


Extrusion/spheronisation, Formulation, MicrocrystallineCellulose, Pellets, Technology.


Multiparticulate consists of several preparations including mini-tablets, powders and pellets. In this review, the aim is to identify the characteristics of microparticulates, especially pellet preparations based on Microcrystalline Cellulose (MCC) using extrusion-spheronisation. Extrusion-spheronisation is the most widely used technique of making pellets involving dry mixing, wet granulation, extrusion, and spheronisation. MCC is the most commonly used additive in the manufacture of pellets in extrusion-spheronisation because it can create pellets with low friability, high porosity, and a smooth surface. However, the shortcoming of MCC-based pellets is the dissolution process is very slow requiring combination with other excipients such as polysorbate 80 and PEG 400. In addition, different treatments on other pellets require the use of different granulation liquids so that they play a role in dissolution. In addition, pellets with a drying process using hot air have smaller sizes compared to those using freeze drying.


Santoso, R., Ziska, R., & Muzdalifah, D. (2019). Formulasi dan evaluasi mikrokapsul salut enterik lansoprazol menggunakan Acryl-Eze® & Sureteric dengan metode ekstrusi dan sferonisasi pada era jaminan kesehatan nasional. Pharmauho: Jurnal Farmasi, Sains, dan Kesehatan, 5(2), 17-20.

Shah, N., Mehta, T., & Gohel, M. (2017). Formulation and optimization of multiparticulate drug delivery system approach for high drug loading. Aaps Pharmscitech, 18(6), 2157-2167.

Ranjith, K., & Mahalaxmi, R. (2015). Pharmaceutical mini tablets. International Journal of PharmTech Research, 7(3), 507-515.

Rao, K. S. S., Mishra, V. V., & Nayak, M. (2019). “Pelletization Technology in Pharmaceutical Formulation.†International Journal of Advanced Pharmaceutical Sciences, 1(2), 1–10.

Nguyen, T. T. L., Anton, N., & Vandamme, T. F. (2017). Oral pellets loaded with nanoemulsions. In E. Andronescu & A. M. Grumezescu (Eds). Nanostructures for Oral Medicine (pp. 203-230). Elsevier. https://doi.org/10.1016/B978-0-323-47720-8.00009-2.

Indonesian Ministry of Health. (2014). Farmakope Indonesia (5th ed). Jakarta, Indonesia: Direktorat Jendral Bina Kefarmasian dan Alat Kesehatan.

Rajabi-Siahboomi, A. R. (Ed.). (2017). Multiparticulate drug delivery: formulation, processing and manufacturing. Springer. Available at http://link.springer.com/10.1007/978-1-4939-7012-4.

Nejati, L., Kalantari, F., Bavarsad, N., Saremnejad, F., Moghaddam, P. T., & Akhgari, A. (2018). Investigation of using pectin and chitosan as natural excipients in pellet formulation. International Journal of Biological Macromolecules, 120, 1208-1215.

Heidari Shayesteh, T., Abbasnia, M., & Mahjub, R. (2016). Preparation of enteric coated pellets containing Lansoprazole using extrusion/spheronisation technique. Trends in Pharmaceutical Sciences, 2(2), 151-158.

El-Mahdi, I. M., & El-Shhibia, S. A. (2017). Effect of spheronizer plate design on the spheronisation of ketoprofen. Future Journal of Pharmaceutical Sciences, 3(2), 153-157.

Jacob, M. (2014). Spheronization, Granulation, Pelletization, and Agglomeration Processes. In Microencapsulation in the Food Industry: A Practical Implementation Guide (pp. 85-98). Academic Press. http://dx.doi.org/10.1016/B978-0-12-404568-2.00009-1.

Kanwar, N., Kumar, R., & Sinha, V. R. (2015). Preparation and Evaluation of Multi-Particulate System (Pellets) of Prasugrel Hydrochloride. Open Pharmaceutical Sciences Journal, 2(1), 74-80.

Aulton, M. E., & Taylor, K. M. (Eds.). (2017). Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. Elsevier Health Sciences.

Ting, G. L., Chan, Y. Y., & Chaw, C. S. (2019). Mixed solvent system as binder for the production of silicified microcrystalline cellulose-based pellets. Journal of Applied Polymer Science, 136(36), 1–9.

Kian, L. K., Jawaid, M., Ariffin, H., & Alothman, O. Y. (2017). Isolation and characterization of microcrystalline cellulose from roselle fibers. International Journal of Biological Macromolecules, 103, 931-940.

Sarkar, S., Liew, C. V., Soh, J. L. P., Heng, P. W. S., & Wong, T. W. (2017). Microcrystalline cellulose: An overview. In C. H. Chia, C. H. Chan, & S. Thomas. (Eds.). Functional Polymeric Composites: Macro to Nanoscales. Oakville, Canada: Apple Academic Press Inc.

Bryan, M. P., Kent, M. D., Rickenbach, J., Rimmer, G., Wilson, D. I., & Rough, S. L. (2015). The effect of mixing on the extrusion–spheronisation of a micro-crystalline cellulose paste. International Journal of Pharmaceutics, 479(1), 1-10.

Evers, M., Weis, D., Antonyuk, S., & Thommes, M. (2019). Scale-up of the rounding process in pelletization by extrusion-spheronisation. Pharmaceutical Development and Technology, 24(8), 1014-1020.

Wlosnewski, J. C., Kumpugdee-Vollrath, M., & Sriamornsak, P. (2010). Effect of drying technique and disintegrant on physical properties and drug release behavior of microcrystalline cellulose-based pellets prepared by extrusion/spheronisation. Chemical Engineering Research and Design, 88(1), 100-108.

Chamsai, B., & Sriamornsak, P. (2013). Novel disintegrating microcrystalline cellulose pellets with improved drug dissolution performance. Powder Technology, 233, 278-285.

Garekani, H. A., Dolatabadi, R., Akhgari, A., Abbaspour, M. R., & Sadeghi, F. (2017). Evaluation of ethylcellulose and its pseudolatex (Surelease) in preparation of matrix pellets of theophylline using extrusion-spheronisation. Iranian Journal of Basic Medical Sciences, 20(1), 9-16.