A Review on Sustainable Approach for Production of Biodiesel from Waste Cooking Oil: A Case Study of Brunei Darussalam
DOI:
https://doi.org/10.36312/esaintika.v7i2.1341Keywords:
Biodiesel, Waste cooking oil, Sustainable engineering, Circular economy, Resource recovery, Sustainable Development GoalsAbstract
Biofuels like biodiesel and bioethanol are the latest technologies to meet the rising energy demand and to replace depleting petroleum supplies. Biodiesel, which is made from vegetable oils, can be used to replace diesel fuel. Vegetable oils are a sustainable energy resource with a similar energy content to diesel fuel. In the proposed process, the main product from the reaction is biodiesel, whereas the by-products consist of glycerol and fertilizer. Biodiesel is mainly used in automotive diesel engines for various reasons, such as having a greater oxygen content, a higher cetane number, a higher viscosity, a lower aromatic content, and very little sulfur. These properties are essential in engine performance, combustion, and emissions. This review provides a comprehensive analysis of recent literature on biodiesel production methods from waste cooking oil, where the methods are grouped systematically and assessed. A decision table on process selection is provided to screen the most suitable technology for biodiesel production from waste cooking oil. The properties and application of potential products and by-products are also discussed. Finally, the case study of supplying biodiesel for B5 fuel in Brunei Darussalam is also provided.
Downloads
References
Abed, K. A., El Morsi, A. K., Sayed, M. M., Shaib, A. A. E., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989. https://doi.org/10.1016/j.ejpe.2018.02.008
Abedin, M. J., Kalam, M. A., Masjuki, H. H., Mohd Sabri, M. F., Rahman, S. M. A., Sanjid, A., & Rizwanul Fattah, I. M. (2016). Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5. Renewable Energy, 88, 20–29. https://doi.org/10.1016/j.renene.2015.11.027
Aghbashlo, M., & Demirbas, A. (2016). Biodiesel: Hopes and dreads. Biofuel Research Journal, 3(2), 379–379. https://doi.org/10.18331/BRJ2016.3.2.2
Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15(1), 584–593. https://doi.org/10.1016/j.rser.2010.09.018
Al-Hasan, M. I. (2013). Biodiesel production from waste frying oil and its application to a diesel engine. Transport, 28(3), Article 3. https://doi.org/10.3846/16484142.2013.830644
Al-Juboori, O., Sher, F., Hazafa, A., Khan, M. K., & Chen, G. Z. (2020). The effect of variable operating parameters for hydrocarbon fuel formation from CO2 by molten salts electrolysis. Journal of CO2 Utilization, 40, 101193. https://doi.org/10.1016/j.jcou.2020.101193
Anderson, D. (2021, August). Pros and Cons of Continuous Flow versus Batch Processing Systems. https://www.labx.com/resources/pros-and-cons-of-continuous-flow-versus-batch-processing-systems/170
Aranda, D. A. G., Santos, R. T. P., Tapanes, N. C. O., Ramos, A. L. D., & Antunes, O. A. C. (2008). Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catalysis Letters, 122(1), 20–25. https://doi.org/10.1007/s10562-007-9318-z
Athar, M., & Zaidi, S. (2020). A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering, 8(6), 104523. https://doi.org/10.1016/j.jece.2020.104523
Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. Energies, 14(18), Article 18. https://doi.org/10.3390/en14185687
Bala, B. K. (2005). Studies on Biodiesels from Transformation of Vegetable Oils for Diesel Engines. Energy, Education, Science and Technology, 15(1/2), 1–43.
Ballesteros, R., Hernández, J. J., & Lyons, L. L. (2010). An experimental study of the influence of biofuel origin on particle-associated PAH emissions. Atmospheric Environment, 44(7), 930–938. https://doi.org/10.1016/j.atmosenv.2009.11.042
Banerjee, A., & Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53(9), 490–497. https://doi.org/10.1016/j.resconrec.2009.04.003
Banerjee, N., Ramakrishnan, R., & Jash, T. (2014). Biodiesel Production from Used Vegetable Oil Collected from Shops Selling Fritters in Kolkata. Energy Procedia, 54, 161–165. https://doi.org/10.1016/j.egypro.2014.07.259
Bartlett, C. J. S., Betts, W. E., Booth, M., Giavazzi, F., Guttmann, H., Heinze, P., Mayers, & Hutcheson, R. C. (1992). Diesel fuel aromatic content and its relationship with emissions from diesel engines (92/54; p. 44). Concawe.
Baskar, G., Kalavathy, G., Aiswarya, R., & Abarnaebenezer Selvakumari, I. (2019). 7—Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In K. Azad (Ed.), Advances in Eco-Fuels for a Sustainable Environment (pp. 187–210). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102728-8.00007-3
Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory (Second). Academic Press. https://doi.org/10.1016/C2011-0-07564-6
Bautista, L. F., Vicente, G., Rodríguez, R., & Pacheco, M. (2009). Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass and Bioenergy, 33(5), 862–872. https://doi.org/10.1016/j.biombioe.2009.01.009
Bhatia, S. C. (2014). 22—Biodiesel. In S. C. Bhatia (Ed.), Advanced Renewable Energy Systems (pp. 573–626). Woodhead Publishing India. https://doi.org/10.1016/B978-1-78242-269-3.50022-X
Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109–1128. https://doi.org/10.1016/j.rser.2015.04.163
Brunei Darussalam Department of Economic Planning and Statistics. (2020). Brunei Darussalam International Merchandise Trade Statistics December and Annual 2020.
Brunei Darussalam Department of Statistics. (2021). Brunei Darussalam Key Indicators 2020. Perpustakaan Dewan Bahasa dan Pustaka Brunei.
Buchori, L., Istadi, I., & Purwanto, P. (2016). Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils—A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 11(3), 406–430. https://doi.org/10.9767/bcrec.11.3.490.406-430
Cao, W., Han, H., & Zhang, J. (2005). Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel, 84(4), 347–351. https://doi.org/10.1016/j.fuel.2004.10.001
Chai, M., Tu, Q., Lu, M., & Yang, Y. J. (2014). Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 125, 106–113. https://doi.org/10.1016/j.fuproc.2014.03.025
Changcheng. (2019, July 22). What is the difference between Batch Reactor and Continuous Reactor? https://greatwall-online.com/news/shownews.php?lang=en&id=63
Chen, K.-S., Lin, Y.-C., Hsu, K.-H., & Wang, H.-K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy, 38(1), 151–156. https://doi.org/10.1016/j.energy.2011.12.020
Chongkhong, S., Kanjaikaew, U., & Tongurai, C. (2012, May 14). A Review of FFA Esterification for Biodiesel Production. The 10th International PSU Engineering Conference.
Clifford, C. B. (2020). 9.2 The Reaction of Biodiesel: Transesterification | EGEE 439: Alternative Fuels from Biomass Sources. PennState College of Earth and Mineral Sciences. https://www.e-education.psu.edu/egee439/node/684
Colucci, J. A., Borrero, E. E., & Alape, F. (2005). Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. Journal of the American Oil Chemists’ Society, 82(7), 525–530. https://doi.org/10.1007/s11746-005-1104-3
Cormier, J. F. (1991). Removal of TBDMS protecting groups from carbohydrates using catalytic transfer hydrogenation. Tetrahedron Letters, 32(2), 187–188. https://doi.org/10.1016/0040-4039(91)80850-6
Curran, M. (2013). Assessing Environmental Impacts of Biofuels Using Lifecycle-Based Approaches. Management of Environmental Quality An International Journal, 24(1), 34–52. https://doi.org/10.1108/14777831311291122
Das, M., Sarkar, M., Datta, A., & Santra, A. K. (2018). An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renewable Energy, 119, 174–184. https://doi.org/10.1016/j.renene.2017.12.014
DeCicco, J. M., Liu, D. Y., Heo, J., Krishnan, R., Kurthen, A., & Wang, L. (2016). Carbon balance effects of U.S. biofuel production and use. Climatic Change, 138(3), 667–680. https://doi.org/10.1007/s10584-016-1764-4
Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003
Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5–6), 466–487. https://doi.org/10.1016/j.pecs.2005.09.001
Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Conversion and Management, 48(3), 937–941. https://doi.org/10.1016/j.enconman.2006.08.004
Demirbas, A. (Ed.). (2008). Introduction. In Biodiesel: A Realistic Fuel Alternative for Diesel Engines (pp. 1–37). Springer. https://doi.org/10.1007/978-1-84628-995-8_1
Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4), 923–927. https://doi.org/10.1016/j.enconman.2008.12.023
Dionisio, K. L., Phillips, K., Price, P. S., Grulke, C. M., Williams, A., Biryol, D., Hong, T., & Isaacs, K. K. (2018). The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2018.125
Dowaki, K., Ohta, T., Kasahara, Y., Kameyama, M., Sakawaki, K., & Mori, S. (2007). An economic and energy analysis on bio-hydrogen fuel using a gasification process. Renewable Energy, 32(1), 80–94. https://doi.org/10.1016/j.renene.2005.12.010
Dunn, R. O. (2001). ALTERNATIVE JET FUELS FROM VEGETABLE OILS. Transactions of the ASAE, 44(6), 1751–1757. https://doi.org/10.13031/2013.6988
El-Fadel, M., & Khoury, R. (2001). Strategies for vehicle waste-oil management: A case study. Resources, Conservation and Recycling, 33(2), 75–91. https://doi.org/10.1016/S0921-3449(01)00058-1
ERIA, & BNERI. (2020). Brunei Darussalam Energy Consumption Survey: Residential and Commercial and Public Sectors (ERIA Research Project Report 2019 3; p. 73).
European Environment Agency. (2018). Trends and projections in Europe 2018: Tracking progress towards Europe’s climate and energy targets. Publications Office of the European Union. https://data.europa.eu/doi/10.2800/931891
F, C. A. G., Guerrero-Romero, A., & Sierra, F. E. (2011). Biodiesel Production from Waste Cooking Oil. In Biodiesel—Feedstocks and Processing Technologies. IntechOpen. https://doi.org/10.5772/25313
Farag, I., & Elmoraghy, M. (2014). In-situ Transesterification of Chlorella vulgaris towards Bio-Jet Fuel Production. International Journal of Engineering and Technical Research (IJETR), 2(11), 8–15.
Farm Energy. (2019, April 3). Reactors for Biodiesel Production – Farm Energy. https://farm-energy.extension.org/reactors-for-biodiesel-production/
Farobie, O., & Matsumura, Y. (2017). State of the art of biodiesel production under supercritical conditions. Progress in Energy and Combustion Science, 63, 173–203. https://doi.org/10.1016/j.pecs.2017.08.001
Faruque, M. O., Razzak, S. A., & Hossain, M. M. (2020). Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts, 10(9), Article 9. https://doi.org/10.3390/catal10091025
Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405–416. https://doi.org/10.1263/jbb.92.405
Gebremariam, S. N., Marchetti, J. M., Gebremariam, S. N., & Marchetti, J. M. (2017). Biodiesel production technologies: Review. AIMS Energy, 5(3), 425–457. https://doi.org/10.3934/energy.2017.3.425
Glisic, S. B., & Orlovic, A. M. (2012). Modelling of non-catalytic biodiesel synthesis under sub and supercritical conditions: The influence of phase distribution. The Journal of Supercritical Fluids, 65, 61–70. https://doi.org/10.1016/j.supflu.2012.02.025
Gliši?, S. B., & Skala, D. U. (2010). Phase transition at subcritical and supercritical conditions of triglycerides methanolysis. The Journal of Supercritical Fluids, 54(1), 71–80. https://doi.org/10.1016/j.supflu.2010.03.005
Glycerol Formula—Structure , Formula , Information, molecular weight of Glycerol. (n.d.). BYJUS. Retrieved February 5, 2022, from https://byjus.com/chemistry/glycerol-formula/
Gude, V. G., Patil, P., Martinez-Guerra, E., Deng, S., & Nirmalakhandan, N. (2013). Microwave energy potential for biodiesel production. Sustainable Chemical Processes, 1(5), 1–31. https://doi.org/10.1186/2043-7129-1-5
Hajjari, M., Tabatabaei, M., Aghbashlo, M., & Ghanavati, H. (2017). A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, 72, 445–464. https://doi.org/10.1016/j.rser.2017.01.034
He, Q. (Sophia), McNutt, J., & Yang, J. (2017). Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, 71(C), 63–76. https://doi.org/10.1016/J.RSER.2016.12.110
Hernandez, J., & Garcia, N. (n.d.). Glycerol Molecule Structure & Formula | Glycerol Molar Mass & Polarity—Video & Lesson Transcript. Study.Com. Retrieved February 5, 2022, from https://study.com/learn/lesson/glycerol-molecule-structure-formula.html
How, H. G., Masjuki, H. H., Kalam, M. A., & Teoh, Y. H. (2014). An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine. Energy, 69, 749–759. https://doi.org/10.1016/j.energy.2014.03.070
Hsu, D. D. (2012). Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing—ScienceDirect. Biomass and Bioenergy, 45, 41–47. https://doi.org/10.1016/j.biombioe.2012.05.019
Hu, N., Tan, J., Wang, X., Zhang, X., & Yu, P. (2017). Volatile organic compound emissions from an engine fueled with an ethanol-biodiesel-diesel blend. Journal of the Energy Institute, 90(1), 101–109. https://doi.org/10.1016/j.joei.2015.10.003
Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39, 109–143. https://doi.org/10.1016/j.jechem.2019.01.024
ICSC 0624—GLYCEROL. (n.d.). Retrieved February 5, 2022, from https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0624
IEA. (2020, November). Renewables 2020 – Analysis. IEA. https://www.iea.org/reports/renewables-2020
Imahara, H., Xin, J., & Saka, S. (2009). Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production. Fuel, 88(7), 1329–1332. https://doi.org/10.1016/j.fuel.2009.01.002
Ismail, S. A. A., & Ali, R. F. M. (2015). Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents. Science and Technology of Advanced Materials, 16(3), 034602. https://doi.org/10.1088/1468-6996/16/3/034602
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies, 5(12), Article 12. https://doi.org/10.3390/en5124952
Jariah, N. F., Hassan, M. A., Taufiq-Yap, Y. H., & Roslan, A. M. (2021). Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review. Processes, 9(7), Article 7. https://doi.org/10.3390/pr9071198
John, A. P. (2021, September 22). Glycerol Formula: Introduction, Structure, and Properties. Embibe Exams. https://www.embibe.com/exams/glycerol-formula/
Kapilan, N., Bayko, D., & Baykov, A. (2014). Review on new methods used for the production of biodiesel. Pet Coal, 56(1), 62–73.
Karakaya, S., & ?im?ek, ?. (2011). Changes in Total Polar Compounds, Peroxide Value, Total Phenols and Antioxidant Activity of Various Oils Used in Deep Fat Frying. Journal of the American Oil Chemists’ Society, 88(9), 1361–1366. https://doi.org/10.1007/s11746-011-1788-x
Khan, H. M., Iqbal, T., Mujtaba, M. A., Soudagar, M. E. M., Veza, I., & Fattah, I. M. R. (2021). Microwave Assisted Biodiesel Production Using Heterogeneous Catalysts. Energies 2021, 14(23), Article 23. https://doi.org/10.3390/en14238135
Kim, M., DiMaggio, C., Salley, S. O., & Simon Ng, K. Y. (2012). A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology, 118, 37–42. https://doi.org/10.1016/j.biortech.2012.04.035
Kirk?Othmer Encyclopedia of Chemical Technology. (2000). John Wiley & Sons, Inc. https://doi.org/10.1002/0471238961
Knothe, G., Dunn, R. O., & Bagby, M. O. (1997). Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels. In ACS Symposium Series (ACS Publications) (Vol. 666, pp. 172–208). https://pubs.acs.org/doi/abs/10.1021/bk-1997-0666.ch010
Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36–59. https://doi.org/10.1016/j.pecs.2016.08.001
Koh, M. Y., & Mohd. Ghazi, T. I. (2011). A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 15(5), 2240–2251. https://doi.org/10.1016/j.rser.2011.02.013
Kuen, H. Y., Mjalli, F. S., & Koon, Y. H. (2010). Recursive Least Squares-Based Adaptive Control of a Biodiesel Transesterification Reactor. Industrial & Engineering Chemistry Research, 49(22), 11434–11442. https://doi.org/10.1021/ie901899t
Kuo, G., Goodwin, J., & Pathak, S. (2015). Acid catalyzed transesterification. Journal of Chemical and Pharmaceutical Research, 7(3), 1780–1786.
Kusdiana, D., & Saka, S. (2004a). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91(3), 289–295. https://doi.org/10.1016/s0960-8524(03)00201-3
Kusdiana, D., & Saka, S. (2004b). Two-step preparation for catalyst-free biodiesel fuel production: Hydrolysis and methyl esterification. Applied Biochemistry and Biotechnology, 113–116(1–3), 781–791. https://doi.org/10.1385/abab:115:1-3:0781
Lakshmi S., V., Aparna, A. M., & Baskaran, R. (2019). Production of Biodiesel from Waste Cooking Oil. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1, 270–274. https://doi.org/10.1109/ICONSTEM.2019.8918857
Leng, L., Han, P., Yuan, X., Li, J., & Zhou, W. (2018). Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges. Energy, 153(C), 1061–1072. https://doi.org/10.1016/j.energy.2018.04.087
Lin, J.-J., & Chen, Y.-W. (2017). Production of biodiesel by transesterification of Jatropha oil with microwave heating. Journal of the Taiwan Institute of Chemical Engineers, 75, 43–50. https://doi.org/10.1016/j.jtice.2017.03.034
Ling, J. S. J., Tan, Y. H., Mubarak, N. M., Kansedo, J., Saptoro, A., & Nolasco-Hipolito, C. (2019). A review of heterogeneous calcium oxide based catalyst from waste for biodiesel synthesis. SN Applied Sciences, 1(8). https://doi.org/10.1007/s42452-019-0843-3
Liu, J., Nan, Y., & Tavlarides, L. L. (2017). Continuous production of ethanol-based biodiesel under subcritical conditions employing trace amount of homogeneous catalysts. Fuel, 193, 187–196. https://doi.org/10.1016/j.fuel.2016.12.058
López, D. E., Goodwin, J. G., Bruce, D. A., & Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A, General, 295(2), 97–105. https://doi.org/10.1016/j.apcata.2005.07.055
Man, X. J., Cheung, C. S., Ning, Z., Wei, L., & Huang, Z. H. (2016). Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel. Fuel, 180, 41–49. https://doi.org/10.1016/j.fuel.2016.04.007
Manirafasha, E., Jiao, K., Zeng, X., Xu, Y., Tang, X., Sun, Y., Lin, L., Murwanashyaka, T., Ndikubwimana, T., Jing, K., & Lu, Y. (2020). Chapter 8—Processing of Microalgae to Biofuels. In A. Yousuf (Ed.), Microalgae Cultivation for Biofuels Production (pp. 111–128). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00008-4
Mansir, N., Taufiq-Yap, Y. H., Rashid, U., & Lokman, I. M. (2017). Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management, 141, 171–182. https://doi.org/10.1016/j.enconman.2016.07.037
Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies, 12(6), Article 6. https://doi.org/10.3390/en12060964
Mathimani, T., Uma, L., & Prabaharan, D. (2015). Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization. Renewable Energy, 81(C), 523–533.
Mazur, A., & Maier, J. A. M. (2016). Magnesium. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 587–592). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00434-7
Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002
Meier, D., van de Beld, B., Bridgwater, A. V., Elliott, D. C., Oasmaa, A., & Preto, F. (2013). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619–641. https://doi.org/10.1016/j.rser.2012.11.061
Milazzo, M. F., & Spina, F. (2015). The use of the risk assessment in the life cycle assessment framework: Human health impacts of a soy-biodiesel production. Management of Environmental Quality: An International Journal, 26(3), 389–406. https://doi.org/10.1108/MEQ-03-2014-0045
Miranda, A. C., da Silva Filho, S. C., Tambourgi, E. B., CurveloSantana, J. C., Vanalle, R. M., & Guerhardt, F. (2018). Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil). Renewable and Sustainable Energy Reviews, 88, 373–379. https://doi.org/10.1016/j.rser.2018.02.028
Mishra, V. K., & Goswami, R. (2017). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273–289. https://doi.org/10.1080/17597269.2017.1336350
Mofijur, M., Siddiki, Sk. Y. A., Shuvho, Md. B. A., Djavanroodi, F., Fattah, I. M. R., Ong, H. C., Chowdhury, M. A., & Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Chemosphere, 270, 128642. https://doi.org/10.1016/j.chemosphere.2020.128642
Mohiddin, M. N. B., Tan, Y. H., Seow, Y. X., Kansedo, J., Mubarak, N. M., Abdullah, M. O., Chan, Y. S., & Khalid, M. (2021). Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 98, 60–81. https://doi.org/10.1016/j.jiec.2021.03.036
Muppaneni, T., Reddy, H. K., Patil, P. D., Dailey, P., Aday, C., & Deng, S. (2012). Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent. Applied Energy, 94, 84–88. https://doi.org/10.1016/j.apenergy.2012.01.023
Nasreen, S., Nafees, M., Qureshi, L., Asad, M. S., Sadiq, A., & Ali, S. D. (2018). Review of Catalytic Transesterification Methods for Biodiesel Production. In Biofuels—State of Development. https://doi.org/10.5772/intechopen.75534
Net Zero by 2050: A Roadmap for the Global Energy Sector - Event. (n.d.). IEA. Retrieved November 17, 2021, from https://www.iea.org/events/net-zero-by-2050-a-roadmap-for-the-global-energy-system
NIST. (n.d.). Glycerin. Retrieved February 5, 2022, from https://webbook.nist.gov/cgi/cbook.cgi?ID=C56815&Mask=2#Thermo-Condensed
Norman, J., MacLean, H. L., & Kennedy, C. A. (2006). Comparing High and Low Residential Density: Life-Cycle Analysis of Energy Use and Greenhouse Gas Emissions | Journal of Urban Planning and Development | Vol 132, No 1. Journal of Urban Planning and Development, 132(1), 10–21.
Okoye, P. U., & Hameed, B. H. (2016). Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renewable and Sustainable Energy Reviews, 53, 558–574. https://doi.org/10.1016/j.rser.2015.08.064
Orchard, B., Denis, J., & Cousins, J. (2007). Developments in biofuel processing technologies. World Pumps, 2007(487), 24–28. https://doi.org/10.1016/S0262-1762(07)70151-7
Özener, O., Yüksek, L., Ergenç, A. T., & Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 115, 875–883. https://doi.org/10.1016/j.fuel.2012.10.081
Panchal, B., Chang, T., Qin, S., Sun, Y., Wang, J., & Bian, K. (2020). Optimization of soybean oil transesterification using an ionic liquid and methanol for biodiesel synthesis. Energy Reports, 6(7), 20–27. https://doi.org/10.1016/j.egyr.2019.11.028
Parmar, A. (2021, July 23). China’s UCO, biodiesel exports keep rising | Argus Media. https://www.argusmedia.com/en/news/2237080-chinas-uco-biodiesel-exports-keep-rising
Peng, B.-X., Shu, Q., Wang, J.-F., Wang, G.-R., Wang, D.-Z., & Han, M.-H. (2008). Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection, 86(6), 441–447. https://doi.org/10.1016/j.psep.2008.05.003
Pinto, A. C., Guarieiro, L. L. N., Rezende, M. J. C., Ribeiro, N. M., Torres, E. A., Lopes, W. A., Pereira, P. A. de P., & Andrade, J. B. de. (2005). Biodiesel: An overview. Journal of the Brazilian Chemical Society, 16, 1313–1330. https://doi.org/10.1590/S0103-50532005000800003
Pisarello, M. L., Costa, B., Mendow, G., & Querini, C. (2010). Esterification with ethanol to produce biodiesel from high acidity raw materials: Kinetic studies and analysis of secondary reactions. Fuel Processing Technology, 91(9), 1005–1014. https://doi.org/10.1016/j.fuproc.2010.03.001
Policies to reduce fuel consumption, air pollution, and carbon emissions from vehicles in G20 nations. (n.d.). International Council on Clean Transportation. Retrieved February 6, 2022, from https://theicct.org/publication/policies-to-reduce-fuel-consumption-air-pollution-and-carbon-emissions-from-vehicles-in-g20-nations/
Potassium phosphate. (n.d.). Retrieved February 5, 2022, from http://chemister.ru/Database/properties-en.php?dbid=1&id=527
Potassium phosphate (K3PO4): Structure, properties, uses - science - 2022. (n.d.). Warbletoncouncil. Retrieved February 5, 2022, from https://warbletoncouncil.org/fosfato-de-potasio-13711
Potassium phosphate tribasic | 7778-53-2. (n.d.). Retrieved February 5, 2022, from https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7206120.htm
Potassium phosphate tribasic reagentgrade, =98 7778-53-2. (n.d.). Retrieved February 5, 2022, from http://www.sigmaaldrich.com/
Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., & Nouralishahi, A. (2019). Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis, 142, 104599. https://doi.org/10.1016/j.jaap.2019.04.015
PubChem. (n.d.). Glycerol. Retrieved February 6, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/753
Pugnet, V., Maury, S., Coupard, V., Dandeu, A., Quoineaud, A.-A., Bonneau, J.-L., & Tichit, D. (2010). Stability, activity and selectivity study of a zinc aluminate heterogeneous catalyst for the transesterification of vegetable oil in batch reactor. Applied Catalysis A: General, 374(1–2), 71–78. https://doi.org/10.1016/j.apcata.2009.11.028
Qu, S., Chen, C., Guo, M., Jiang, W., Lu, J., Yi, W., & Ding, J. (2021). Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. Journal of Cleaner Production, 311, 127490. https://doi.org/10.1016/j.jclepro.2021.127490
Quader, M. A., & Ahmed, S. (2017). Chapter Four—Bioenergy With Carbon Capture and Storage (BECCS): Future Prospects of Carbon-Negative Technologies. In M. G. Rasul, A. kalam Azad, & S. C. Sharma (Eds.), Clean Energy for Sustainable Development (pp. 91–140). Academic Press. https://doi.org/10.1016/B978-0-12-805423-9.00004-1
Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017
Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., & Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224–231. https://doi.org/10.1016/j.molliq.2019.01.096
Rajaeifar, M. A., Akram, A., Ghobadian, B., Rafiee, S., Heijungs, R., & Tabatabaei, M. (2016). Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment. Energy, 106(C), 87–102.
Rajalingam, A., S P, J., Kumar, A., & Khan, M. A. (2016). Production methods of biodiesel. Journal of Chemical and Pharmaceutical Research, 8(3), 170–173.
Rajamohan, S., Kasimani, R., Ramakrishnan, P., & Shameer, P. M. (2017). A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews, 82, 2970–2992. https://doi.org/10.1016/j.rser.2017.10.037
Richards, P. (n.d.). Automotive Fuels Reference Book, Third Edition (Third). SAE International. Retrieved February 6, 2022, from https://www.sae.org/publications/books/content/r-297/
Roberts, L. G., & Patterson, T. J. (2014). Biofuels. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 469–475). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.01054-X
Rodrigues, A., Bordado, J. C., & Santos, R. G. dos. (2017). Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways. Energies, 10(11), Article 11. https://doi.org/10.3390/en10111817
Rokni, K., Mostafaei, M., Dehghani Soufi, M., & Kahrizi, D. (2022). Microwave-assisted intensification of transesterification reaction for biodiesel production from camelina oil: Optimization by Box-Behnken Design. Bioresource Technology Reports, 17, 100928. https://doi.org/10.1016/j.biteb.2021.100928
Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. M. R., Reham, S. S., & Rashed, M. M. (2015). State of the art of biodiesel production processes: A review of the heterogeneous catalyst. RSC Advances, 5(122), 101023–101044. https://doi.org/10.1039/C5RA09862A
Safety Data Sheet: No. 2 Biodiesel Blend. (2018). Phillips 66 Company. https://www.marcnelsonoil.com/wp-content/uploads/2019/04/2-Bio-Diesel-Blend-P66-SDS.pdf
Saifuddin, N. M., & Hua, C. (2004). Production of ethyl ester (biodiesel) from used frying oil: Optimization of transesterification process using microwave irradiation. Malaysian J Chem, 6(1), 77–82.
Saka, S., & Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80(2), 225–231. https://doi.org/10.1016/S0016-2361(00)00083-1
Sánchez-Gimeno, A. C., Negueruela, A. I., Benito, M., Vercet, A., & Oria, R. (2008). Some physical changes in Bajo Aragón extra virgin olive oil during the frying process. Food Chemistry, 110(3), 654–658. https://doi.org/10.1016/j.foodchem.2008.02.057
Sani, Y. M., Daud, W. M. A. W., & Abdul Aziz, A. R. (2013). Solid acid-catalyzed biodiesel production from microalgal oil—The dual advantage. Journal of Environmental Chemical Engineering, 1(3), 113–121. https://doi.org/10.1016/j.jece.2013.04.006
Sathyamurthy, R., Sekhar, S. C., & PhD, M. V. (2021). Prediction of Biodiesel Production from Sardine Fish Oil Methyl Ester Using Microwave Assisted Transesterification Method Using Response Surface Methodology (SAE Technical Paper 2021-01–1202). SAE International. https://doi.org/10.4271/2021-01-1202
?ensöz, S., Ang?n, D., & Yorgun, S. (2000). Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): Fuel properties of bio-oil. Biomass and Bioenergy, 19(4), 271–279. https://doi.org/10.1016/S0961-9534(00)00041-6
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
Shahid, E. M., Jamal, Y., Shah, A. N., Rumzan, N., & Munsha, M. (2012). EFFECT OF USED COOKING OIL METHYL ESTER ON COMPRESSION IGNITION ENGINE. Journal of Quality and Technology Management, VIII(II), 91–104.
Sharmeen, S., Rahman, Md. S., Islam, Md. M., Islam, Md. S., Shahruzzaman, Md., Mallik, A. K., Haque, P., & Rahman, M. M. (2019). 11—Application of polysaccharides in enzyme immobilization. In S. Maiti & S. Jana (Eds.), Functional Polysaccharides for Biomedical Applications (pp. 357–395). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102555-0.00011-X
Shi, H., Wang, D., Yuan, D., & Wang, T. (2013). Two-Layer Predictive Control of a Continuous Biodiesel Transesterification Reactor. Journal of Applied Mathematics, 2013, e587841. https://doi.org/10.1155/2013/587841
Suib, S. L. (Ed.). (2013). New and Future Developments in Catalysis: Catalytic Biomass Conversion. Elsevier. https://www.sciencedirect.com/science/article/pii/B9780444538789000187
Syafiuddin, A., Chong, J. H., Yuniarto, A., & Hadibarata, T. (2020). The current scenario and challenges of biodiesel production in Asian countries: A review. Bioresource Technology Reports, 12, 100608. https://doi.org/10.1016/j.biteb.2020.100608
Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061
Tan, H. W., Abdul Aziz, A. R., & Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118–127. https://doi.org/10.1016/j.rser.2013.06.035
Tan, K. T., Gui, M. M., Lee, K. T., & Mohamed, A. R. (2010). An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. Selected Papers from the 9th International Symposium on Supercritical Fluids (ISSF 2009) - New Trends in Supercritical Fluids: Energy, Materials, Processing, Arcachon, France, May 18-20, 2009, 53(1–3), 82–87. https://doi.org/10.1016/j.supflu.2009.12.017
Thangarasu, V., & Anand, R. (2019). Chapter 17—Comparative evaluation of corrosion behavior of Aegle Marmelos Correa diesel, biodiesel, and their blends on aluminum and mild steel metals. In A. K. Azad & M. Rasul (Eds.), Advanced Biofuels: Applications, Technologies and Environmental Sustainability (pp. 443–471). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102791-2.00017-9
The Chemistry of Biodiesel | Biodiesel Project | Goshen College. (n.d.). Retrieved February 5, 2022, from https://www.goshen.edu/academics/chemistry/biodiesel/chemistry-of/
Theakston, F., & Weltgesundheitsorganisation (Eds.). (2011). Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. World Health Organization, Regional Office for Europe. www.euro.who.int
Thermo Fisher Scientific. (2012). Safety Data Sheet. https://www.fishersci.com/msds?productName=P289500
Thoai, D. N., Tongurai, C., Prasertsit, K., & Kumar, A. (2019). Review on biodiesel production by two-step catalytic conversion. Biocatalysis and Agricultural Biotechnology, 18, 101023. https://doi.org/10.1016/j.bcab.2019.101023
TongVo Chemicals Limited. (2008). Tripotassium phosphate. http://www.tongvo.cn/products/potassium-phosphate.html
Trentin, C. M., Lima, A. P., Alkimim, I. P., Silva, C. da, Castilhos, F. de, Mazutti, M. A., & Oliveira, J. V. (2011). Continuous catalyst-free production of fatty acid ethyl esters from soybean oil in microtube reactor using supercritical carbon dioxide as co-solvent. The Journal of Supercritical Fluids, 56(3), 283–291. https://doi.org/10.1016/j.supflu.2010.10.037
Uludamar, E., Tosun, E., & Ayd?n, K. (2016). Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels. Fuel, 177, 326–333. https://doi.org/10.1016/j.fuel.2016.03.028
Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700–1702. https://doi.org/10.1016/j.fuel.2010.10.045
Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004a). Biodiesel Analytical Methods: August 2002--January 2004 (NREL/SR-510-36240). National Renewable Energy Lab., Golden, CO (US). https://doi.org/10.2172/15008800
Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004b). Biodiesel Production Technology: August 2002--January 2004 (NREL/SR-510-36244). National Renewable Energy Lab., Golden, CO (US). https://doi.org/10.2172/15008801
van Kasteren, J. M. N., & Nisworo, A. P. (2007). A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resources, Conservation and Recycling, 50(4), 442–458. https://doi.org/10.1016/j.resconrec.2006.07.005
Varol, P. M., Çakan, A., Kiren, B., & Ayas, N. (2021). Microwave-assisted catalytic transesterification of soybean oil using KOH/?-Al2O3. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01253-4
Vieira, S. S., Magriotis, Z. M., Santos, N. A. V., Saczk, A. A., Hori, C. E., & Arroyo, P. A. (2013). Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts. Bioresource Technology, 133, 248–255. https://doi.org/10.1016/j.biortech.2013.01.107
Voronin, V. I., Ponosov, Y. S., Berger, I. F., Proskurnina, N. V., Zubkov, V. G., Tyutyunnik, A. P., Bushmeleva, S. N., Balagurov, A. M., Sheptyakov, D. V., Burmakin, E. I., Shekhtman, G. S., & Vovkotrub, E. G. (2006). Crystal structure of the low-temperature form of K3PO4. Inorganic Materials, 42(8), 908–913. https://doi.org/10.1134/S0020168506080206
Vriesema, H. H., & Terlingen, J. G. A. (2013). Fast dissolving water-soluble fertilizer formulations and methods and uses thereof (United States Patent US8419820B2). https://patents.google.com/patent/US8419820B2/en
Wei, R., Li, H., Chen, Y., Hu, T., ??? H., Li, J., & Xu, C. (2020). Environmental Issues Related to Bioenergy. In Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-819727-1.00011-X
Wong, A. (2019, April 10). Brunei margarine and edible oils to reduce imports, boost local F&B industry. Biz Brunei. https://www.bizbrunei.com/2019/04/brunei-margarine-and-edible-oils-to-reduce-imports-boost-local-fb-industry-western-food-packaging/
Worledge, T. (2019, August 8). China to miss E10 ethanol target “by wide margin”: USDA. https://www.agricensus.com/Article/China-to-miss-E10-ethanol-target-by-wide-margin-USDA-7869.html
Xu, Y.-J., Li, G.-X., & Sun, Z.-Y. (2016). Development of biodiesel industry in China: Upon the terms of production and consumption. Renewable and Sustainable Energy Reviews, 54, 318–330. https://doi.org/10.1016/j.rser.2015.10.035
Yang, J., Fujiwara, T., & Geng, Q. (2016). Life cycle assessment of biodiesel fuel production from waste cooking oil in Okayama City. Journal of Material Cycles and Waste Management, 19(4), 1457–1467. https://doi.org/10.1007/s10163-016-0540-x
Yaqoob, H., Teoh, Y. H., Goraya, T. S., Sher, F., Jamil, M. A., Rashid, T., & Yar, K. A. (2021). Energy evaluation and environmental impact assessment of transportation fuels in Pakistan. Case Studies in Chemical and Environmental Engineering, 3, 100081. https://doi.org/10.1016/j.cscee.2021.100081
Yaqoob, H., Teoh, Y. H., Jamil, M. A., & Gulzar, M. (2021). Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. Journal of the Energy Institute, 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
Yoo, S. J., Lee, H.-S., Veriansyah, B., Kim, J., Kim, J.-D., & Lee, Y.-W. (2010). Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresource Technology, 101(22), 8686–8689. https://doi.org/10.1016/j.biortech.2010.06.073
Yusuf, N. N. A. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7), 2741–2751. https://doi.org/10.1016/j.enconman.2010.12.004
Zhang, H., Wang, Q., & Mortimer, S. R. (2012). Waste cooking oil as an energy resource: Review of Chinese policies. Renewable and Sustainable Energy Reviews, 16(7), 5225–5231. https://doi.org/10.1016/j.rser.2012.05.008
Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1–16. https://doi.org/10.1016/S0960-8524(03)00040-3
Zhao, Y., Wang, C., Zhang, L., Chang, Y., & Hao, Y. (2021). Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility. Renewable and Sustainable Energy Reviews, 140, 110661. https://doi.org/10.1016/j.rser.2020.110661
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mas Fathasha Abdullah, Audrey Menti Baring Anak Melayu, Faten Khairullisa Najihah Hassim, Ho Hao Tien, Muhammad Hasbul Wafi Mohammad Hamdani, Wong Yen Shin, Muhammad Roil Bilad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

