Thermal Annealing Surface Modification: Effect on Surface and Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Wastewater Treatment
DOI:
https://doi.org/10.36312/e-saintika.v5i1.395Keywords:
thermal annealing, nanofiber membrane, wastewaterAbstract
As the forefront in fiber materials development, electrospun nanofiber membrane (NFM) is potentially reliable for wastewater treatment due to its excellent properties for instance; large surface area, high porosity, tuneable pore size, and has great flux as compared to other conventional membranes. However, fouling issue will lead to degradation of membrane performance. Fouling issue can be alleviated by applying membrane surface modification. In this study, thermal annealing is applied onto nylon 6,6 nanofiber membrane with three different temperatures (60°C, 80°C and 120°C). Results show that annealing causes membrane shrinkage and reduction of membrane fiber diameter where the fiber reduced from 138.5 nm to 108.5 nm when annealed at 120°C. The optimum annealing temperature for the membrane was found to be at 60˚C as the membrane shows the highest flux at 1200 L/m2.h at 75 minutes filtration time and took longer time to get fouled (>75 minutes) compared with un-annealed membrane (55 minutes). Nylon 6,6 nanofiber membrane is also proven to give more than 90% of COD and turbidity rejection.
Downloads
References
Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Mohd Yusoff, A. R., … Faungnawakij, K. (2019). Electrospun Nylon 6,6/ZIF-8 Nanofiber Membrane for Produced Water Filtration. Water, 11(10), 2111. https://doi.org/10.3390/w11102111
Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Sambudi, N. S., & Mohd Yusoff, A. R. (2019). Improving Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Produced Water Filtration via Solvent Vapor Treatment. Polymers, 11(12). https://doi.org/10.3390/polym11122117
Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., … Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613
Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C., … Vankelecom, I. F. J. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470–481. https://doi.org/10.1016/j.seppur.2018.07.071
Ahmad, N. A., Leo, C. P., Ahmad, A. L., & Ramli, W. K. W. (2015). Membranes with Great Hydrophobicity: A Review on Preparation and Characterization. Separation & Purification Reviews, 44(2), 109–134. https://doi.org/10.1080/15422119.2013.848816
Azizo, A. S., Wirzal, M. D. H., Bilad, M. R., & Yusoff, A. R. M. (2017). Assessment of nylon 6, 6 nanofibre membrane for microalgae harvesting. AIP Conference Proceedings, 1891(1), 020032. https://doi.org/10.1063/1.5005365
Balamurugan, R., Sundarrajan, S., & Ramakrishna, S. (2011). Recent Trends in Nanofibrous Membranes and Their Suitablity for Air and Water Filtrations. 2011(1), 232–248.
Benito, A., Garcia, G., & Gonzalez-Olmos, R. (2017). Fouling reduction by UV-based pretreatment in hollow fiber ultrafiltration membrane for urban wastewater reuse. Journal of Membrane Science, 536, 141–147.
Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M., … Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223, 23–28. https://doi.org/10.1016/j.jenvman.2018.06.007
Chen, J., Deng, T., Liu, Z., & Songc, H. (2017). Controllable shrinking of silicon oxide nanopores by high temperature annealing. 2017 China Semiconductor Technology International Conference (CSTIC), 1–3. https://doi.org/10.1109/CSTIC.2017.7919879
Eliseus, A., Bilad, M. R., Nordin, N. A. H. M., Putra, Z. A., & Wirzal, M. D. H. (2017). Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresource Technology, 241(Supplement C), 661–668. https://doi.org/10.1016/j.biortech.2017.05.175
Foong, C. Y., Wirzal, M. D. H., & Bustam, M. A. (2019). A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. Journal of Molecular Liquids, 111793. https://doi.org/10.1016/j.molliq.2019.111793
Hemra, K., Kitiwan, M., & Atong, D. (2011). Effects of Annealing Conditions on Morphology and Permeability of Palladium Membrane. Materials Science Forum, 695. https://doi.org/10.4028/www.scientific.net/MSF.695.25
Ibrahim, N. A., Wirzal, M. D. H., Nordin, N. A. H., & Halim, N. S. A. (2018). Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment. IOP Conference Series: Earth and Environmental Science, 140(1), 012021. https://doi.org/10.1088/1755-1315/140/1/012021
JiÅ™ÃÄek, T., Komárek, M., & Lederer, T. (2017). Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation [Research article]. https://doi.org/10.1155/2017/7143035
Kusworo, T. D., Aryanti, N., Firdaus, M. M. H., & Sukmawati, H. (2015). Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment. AIP Conference Proceedings, 1699(1), 040014. https://doi.org/10.1063/1.4938329
Li, L., Hashaikeh, R., & Arafat, H. A. (2013). Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 436, 57–67. https://doi.org/10.1016/j.memsci.2013.02.037
Mat Nawi, N. I., Abd Halim, N. S., Lee, L. C., Wirzal, M. D. H., Bilad, M. R., Nordin, N. A. H., & Putra, Z. A. (2020). Improved Nylon 6,6 Nanofiber Membrane in A Tilted Panel Filtration System for Fouling Control in Microalgae Harvesting. Polymers, 12(2), 252. https://doi.org/10.3390/polym12020252
Mohd, A. T., Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md. Nordin, N. A. H., Adi Putra, Z., & Mohd Yusoff, A. R. (2020). EFFECT OF BMIM-CHLORIDE ON PHYSIO CHEMICAL PROPERTIES OF NANOFIBER MEMBRANE FOR DOMESTIC WASTEWATER TREATMENT (Kesan BMIM-Klorida ke atas Sifat-Sifat Fisio-Kimia Membran Nanogentian untuk Rawatan Sisa Air Domestik). Malaysian Journal of Analytical Sciences, 24, 78–86.
Saad, M. S., Balasubramaniam, L., Wirzal, M. D. H., Abd Halim, N. S., Bilad, M. R., Md Nordin, N. A. H., … Ramli, F. N. (2020). Integrated Membrane–Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. Membranes, 10(8), 184. https://doi.org/10.3390/membranes10080184
Saad, M. S., Wirzal, M. D. H., Abd Halim, N. S., & Khar, M. R. (2020). Removal color from Palm Oil Mill Effluent (POME): Electrocoagulation Method vs Microfiltration using Nanofiber Membrane. International Journal of Electrochemical Science, 11283–11293. https://doi.org/10.20964/2020.11.08
Sun, Y., Bai, Y., Jiayu, T., Zhiwei, Z., & Fuyi, C. (2017). Seawater-driven forward osmosis for direct treatment of municipal wastewater. Membrane Water Treatment, 8(5). Retrieved from http://www.i-asem.org/publication_conf/acem16/4.AMWT16/M4E.9.MW272_0518F3.pdf
Tan, E. P. S., & Lim, C. T. (2006). Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology, 17(10), 2649–2654. https://doi.org/10.1088/0957-4484/17/10/034
Wang, Z., Cai, N., Dai, Q., Li, C., Hou, D., Luo, X., … Yu, F. (2014). Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes. Fibers and Polymers, 15(7), 1406–1413. https://doi.org/10.1007/s12221-014-1406-2
Zhang, J., Liu, H., Ding, J.-X., Zhuang, X.-L., Chen, X.-S., & Li, Z.-M. (2015). Annealing regulates the performance of an electrospun poly(ε-caprolactone) membrane to accommodate tissue engineering. RSC Advances, 5(41), 32604–32608. https://doi.org/10.1039/C5RA05530J
Zhang, L., Liu, L. G., Pan, F. L., Wang, D. F., Pan, Z. J., & Zhang, L. (2012). Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane. Journal of Engineered Fibers and Fabrics, 7(3), 7–16.
Zhang, Lu, Liu, L., Pan, F., Wang, D., & Pan, Z. (2012). Effects of Heat Treatment on the Morphology and Performance of PSU Electrospun Nanofibrous Membrane. Journal of Engineered Fibers and Fabrics, 7(2_suppl), 155892501200702S02. https://doi.org/10.1177/155892501200702S02
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

