Thermal Annealing Surface Modification: Effect on Surface and Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Wastewater Treatment

Authors

  • Muhammad Amir Nasrin Mohd Asri Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
  • Nur Syakinah Abd Halim Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
  • Mohd Dzul Hakim Wirzal Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
  • Abdull Rahim Mohd Yusoff Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Malaysia
  • Muhammad Roil Bilad Faculty of Applied Science and Engineering, Universitas Pendidikan Mandalika (UNDIKMA), Jl. Pemuda No. 59A, 83126, Mataram, Indonesia.

DOI:

https://doi.org/10.36312/e-saintika.v5i1.395

Keywords:

thermal annealing, nanofiber membrane, wastewater

Abstract

As the forefront in fiber materials development, electrospun nanofiber membrane (NFM) is potentially reliable for wastewater treatment due to its excellent properties for instance; large surface area, high porosity, tuneable pore size, and has great flux as compared to other conventional membranes. However, fouling issue will lead to degradation of membrane performance. Fouling issue can be alleviated by applying membrane surface modification. In this study, thermal annealing is applied onto nylon 6,6 nanofiber membrane with three different temperatures (60°C, 80°C and 120°C). Results show that annealing causes membrane shrinkage and reduction of membrane fiber diameter where the fiber reduced from 138.5 nm to 108.5 nm when annealed at 120°C. The optimum annealing temperature for the membrane was found to be at 60˚C as the membrane shows the highest flux at 1200 L/m2.h at 75 minutes filtration time and took longer time to get fouled (>75 minutes) compared with un-annealed membrane (55 minutes). Nylon 6,6 nanofiber membrane is also proven to give more than 90% of COD and turbidity rejection.

Downloads

Download data is not yet available.

References

Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Mohd Yusoff, A. R., … Faungnawakij, K. (2019). Electrospun Nylon 6,6/ZIF-8 Nanofiber Membrane for Produced Water Filtration. Water, 11(10), 2111. https://doi.org/10.3390/w11102111

Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md Nordin, N. A. H., Adi Putra, Z., Sambudi, N. S., & Mohd Yusoff, A. R. (2019). Improving Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Produced Water Filtration via Solvent Vapor Treatment. Polymers, 11(12). https://doi.org/10.3390/polym11122117

Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., … Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613

Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C., … Vankelecom, I. F. J. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470–481. https://doi.org/10.1016/j.seppur.2018.07.071

Ahmad, N. A., Leo, C. P., Ahmad, A. L., & Ramli, W. K. W. (2015). Membranes with Great Hydrophobicity: A Review on Preparation and Characterization. Separation & Purification Reviews, 44(2), 109–134. https://doi.org/10.1080/15422119.2013.848816

Azizo, A. S., Wirzal, M. D. H., Bilad, M. R., & Yusoff, A. R. M. (2017). Assessment of nylon 6, 6 nanofibre membrane for microalgae harvesting. AIP Conference Proceedings, 1891(1), 020032. https://doi.org/10.1063/1.5005365

Balamurugan, R., Sundarrajan, S., & Ramakrishna, S. (2011). Recent Trends in Nanofibrous Membranes and Their Suitablity for Air and Water Filtrations. 2011(1), 232–248.

Benito, A., Garcia, G., & Gonzalez-Olmos, R. (2017). Fouling reduction by UV-based pretreatment in hollow fiber ultrafiltration membrane for urban wastewater reuse. Journal of Membrane Science, 536, 141–147.

Bilad, M. R., Azizo, A. S., Wirzal, M. D. H., Jia Jia, L., Putra, Z. A., Nordin, N. A. H. M., … Yusoff, A. R. M. (2018). Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. Journal of Environmental Management, 223, 23–28. https://doi.org/10.1016/j.jenvman.2018.06.007

Chen, J., Deng, T., Liu, Z., & Songc, H. (2017). Controllable shrinking of silicon oxide nanopores by high temperature annealing. 2017 China Semiconductor Technology International Conference (CSTIC), 1–3. https://doi.org/10.1109/CSTIC.2017.7919879

Eliseus, A., Bilad, M. R., Nordin, N. A. H. M., Putra, Z. A., & Wirzal, M. D. H. (2017). Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresource Technology, 241(Supplement C), 661–668. https://doi.org/10.1016/j.biortech.2017.05.175

Foong, C. Y., Wirzal, M. D. H., & Bustam, M. A. (2019). A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. Journal of Molecular Liquids, 111793. https://doi.org/10.1016/j.molliq.2019.111793

Hemra, K., Kitiwan, M., & Atong, D. (2011). Effects of Annealing Conditions on Morphology and Permeability of Palladium Membrane. Materials Science Forum, 695. https://doi.org/10.4028/www.scientific.net/MSF.695.25

Ibrahim, N. A., Wirzal, M. D. H., Nordin, N. A. H., & Halim, N. S. A. (2018). Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment. IOP Conference Series: Earth and Environmental Science, 140(1), 012021. https://doi.org/10.1088/1755-1315/140/1/012021

JiříÄek, T., Komárek, M., & Lederer, T. (2017). Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation [Research article]. https://doi.org/10.1155/2017/7143035

Kusworo, T. D., Aryanti, N., Firdaus, M. M. H., & Sukmawati, H. (2015). Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment. AIP Conference Proceedings, 1699(1), 040014. https://doi.org/10.1063/1.4938329

Li, L., Hashaikeh, R., & Arafat, H. A. (2013). Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 436, 57–67. https://doi.org/10.1016/j.memsci.2013.02.037

Mat Nawi, N. I., Abd Halim, N. S., Lee, L. C., Wirzal, M. D. H., Bilad, M. R., Nordin, N. A. H., & Putra, Z. A. (2020). Improved Nylon 6,6 Nanofiber Membrane in A Tilted Panel Filtration System for Fouling Control in Microalgae Harvesting. Polymers, 12(2), 252. https://doi.org/10.3390/polym12020252

Mohd, A. T., Abd Halim, N. S., Wirzal, M. D. H., Bilad, M. R., Md. Nordin, N. A. H., Adi Putra, Z., & Mohd Yusoff, A. R. (2020). EFFECT OF BMIM-CHLORIDE ON PHYSIO CHEMICAL PROPERTIES OF NANOFIBER MEMBRANE FOR DOMESTIC WASTEWATER TREATMENT (Kesan BMIM-Klorida ke atas Sifat-Sifat Fisio-Kimia Membran Nanogentian untuk Rawatan Sisa Air Domestik). Malaysian Journal of Analytical Sciences, 24, 78–86.

Saad, M. S., Balasubramaniam, L., Wirzal, M. D. H., Abd Halim, N. S., Bilad, M. R., Md Nordin, N. A. H., … Ramli, F. N. (2020). Integrated Membrane–Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. Membranes, 10(8), 184. https://doi.org/10.3390/membranes10080184

Saad, M. S., Wirzal, M. D. H., Abd Halim, N. S., & Khar, M. R. (2020). Removal color from Palm Oil Mill Effluent (POME): Electrocoagulation Method vs Microfiltration using Nanofiber Membrane. International Journal of Electrochemical Science, 11283–11293. https://doi.org/10.20964/2020.11.08

Sun, Y., Bai, Y., Jiayu, T., Zhiwei, Z., & Fuyi, C. (2017). Seawater-driven forward osmosis for direct treatment of municipal wastewater. Membrane Water Treatment, 8(5). Retrieved from http://www.i-asem.org/publication_conf/acem16/4.AMWT16/M4E.9.MW272_0518F3.pdf

Tan, E. P. S., & Lim, C. T. (2006). Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology, 17(10), 2649–2654. https://doi.org/10.1088/0957-4484/17/10/034

Wang, Z., Cai, N., Dai, Q., Li, C., Hou, D., Luo, X., … Yu, F. (2014). Effect of thermal annealing on mechanical properties of polyelectrolyte complex nanofiber membranes. Fibers and Polymers, 15(7), 1406–1413. https://doi.org/10.1007/s12221-014-1406-2

Zhang, J., Liu, H., Ding, J.-X., Zhuang, X.-L., Chen, X.-S., & Li, Z.-M. (2015). Annealing regulates the performance of an electrospun poly(ε-caprolactone) membrane to accommodate tissue engineering. RSC Advances, 5(41), 32604–32608. https://doi.org/10.1039/C5RA05530J

Zhang, L., Liu, L. G., Pan, F. L., Wang, D. F., Pan, Z. J., & Zhang, L. (2012). Effects of heat treatment on the morphology and performance of PSU electrospun nanofibrous membrane. Journal of Engineered Fibers and Fabrics, 7(3), 7–16.

Zhang, Lu, Liu, L., Pan, F., Wang, D., & Pan, Z. (2012). Effects of Heat Treatment on the Morphology and Performance of PSU Electrospun Nanofibrous Membrane. Journal of Engineered Fibers and Fabrics, 7(2_suppl), 155892501200702S02. https://doi.org/10.1177/155892501200702S02

Downloads

Published

2021-03-23

How to Cite

Mohd Asri, M. A. N., Abd Halim, N. S., Wirzal, M. D. H., Mohd Yusoff, A. R., & Bilad, M. R. (2021). Thermal Annealing Surface Modification: Effect on Surface and Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Wastewater Treatment. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 5(1), 56–66. https://doi.org/10.36312/e-saintika.v5i1.395

Issue

Section

Natural and Applied Sciences