Progress in development of Membrane Fouling Control for Microalgae Filtration: a Review
DOI:
https://doi.org/10.36312/e-saintika.v5i1.424Keywords:
microalgae harvesting, membrane filtration, membrane fouling, biofuel, renewable energyAbstract
Microalgae biomass is an attractive feedstock for biofuels and other applications. Prior utilization the microalgae biomass must be harvested, a step that contributes largely to the overall energy and production costs. Membrane filtration is seen as a viable option for microalgae concentration. It is mainly attractive as primary step treating the diluted broth. However, its application is largely limited by membrane fouling that lowers overall process efficiency and productivity. This study provides an overview on the recent progress of the membrane technology particularly on technology to address the membrane fouling issue in microalgae filtration and upconcentration. Firstly, brief introduction of potential of microalgae biomass and membrane technology is provided. It followed by comprehensive overview of membrane fouling control approach. The membrane fouling control approaches are classified into optimization of operational parameters, membrane material development, hydrodynamic manipulation, improved module design and lastly module spacer development. Lastly, perspective on future research direction is also provided.
Downloads
References
Abid, H. S., Johnson, D. J., Hashaikeh, R., & Hilal, N. (2017). A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination, 420, 384–402. https://doi.org/10.1016/j.desal.2017.07.019
Alipourzadeh, A., Mehrnia, M. R., Sani, A. H., & Babaei, A. (2016). Application of response surface methodology for investigation of membrane fouling behaviours in microalgal membrane bioreactor: The effect of aeration rate and biomass concentration. RSC Advances, 6(112), 111182–111189. https://doi.org/10.1039/C6RA23188H
Amer, L., Adhikari, B., & Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology, 102(20), 9350–9359. https://doi.org/10.1016/j.biortech.2011.08.010
Araújo, P. A., Miller, D. J., Correia, P. B., van Loosdrecht, M. C. M., Kruithof, J. C., Freeman, B. D., Paul, D. R., & Vrouwenvelder, J. S. (2012). Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination, 295, 1–10. https://doi.org/10.1016/j.desal.2012.02.026
Armbruster, S., Cheong, O., Lölsberg, J., Popovic, S., Yüce, S., & Wessling, M. (2018). Fouling mitigation in tubular membranes by 3D-printed turbulence promoters. Journal of Membrane Science, 554, 156–163. https://doi.org/10.1016/j.memsci.2018.02.015
Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037
Beilen, J. B. van. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels, Bioproducts and Biorefining, 4(1), 41–52. https://doi.org/10.1002/bbb.193
Bharathiraja, B., Chakravarthy, M., Ranjith Kumar, R., Yogendran, D., Yuvaraj, D., Jayamuthunagai, J., Praveen Kumar, R., & Palani, S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634–653. https://doi.org/10.1016/j.rser.2015.03.047
Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283–1300. https://doi.org/10.1016/j.biotechadv.2014.07.008
Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2013). Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresource Technology, 138, 329–338. https://doi.org/10.1016/j.biortech.2013.03.175
Bilad, M. R., Marbelia, L., Naik, P., Laine, C., & Vankelecom, I. F. J. (2014). Direct comparison of aerated and vibrated filtration systems for harvesting of Chlorella vulgaris. Algal Research, 6, 32–38. https://doi.org/10.1016/j.algal.2014.09.001
Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343–352. https://doi.org/10.1016/j.biortech.2012.02.009
Castel, C., & Favre, E. (2018). Membrane separations and energy efficiency. Journal of Membrane Science, 548, 345–357. https://doi.org/10.1016/j.memsci.2017.11.035
Chen, X., Huang, C., & Liu, T. (2012). Harvesting of microalgae Scenedesmus sp. Using polyvinylidene fluoride microfiltration membrane. Desalination and Water Treatment, 45(1–3), 177–181. https://doi.org/10.1080/19443994.2012.692034
Chin, H. J., Shen, T. F., Su, H. P., & Ding, S. T. (2006). Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: Optimal growth and use as a dietary supplement for laying hens. Australian Journal of Agricultural Research, 57(1), 13. https://doi.org/10.1071/AR05099
Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838. https://doi.org/10.1016/j.biortech.2008.06.061
Demirbas, A., & Demirbas, M. F. (2010). Algae Energy: Algae as a New Source of Biodiesel. Springer-Verlag. https://www.springer.com/gp/book/9781849960496
Discart, V., Bilad, M. R., Moorkens, R., Arafat, H., & Vankelecom, I. F. J. (2015). Decreasing membrane fouling during Chlorella vulgaris broth filtration via membrane development and coagulant assisted filtration. Algal Research, 9, 55–64. https://doi.org/10.1016/j.algal.2015.02.029
Eliseus, A., Bilad, M. R., Nordin, N. A. H. M., Putra, Z. A., & Wirzal, M. D. H. (2017). Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresource Technology, 241, 661–668. https://doi.org/10.1016/j.biortech.2017.05.175
Frappart, M., Massé, A., Jaffrin, M. Y., Pruvost, J., & Jaouen, P. (2011). Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination, 265(1), 279–283. https://doi.org/10.1016/j.desal.2010.07.061
Fritzmann, C., Hausmann, M., Wiese, M., Wessling, M., & Melin, T. (2013). Microstructured spacers for submerged membrane filtration systems. Journal of Membrane Science, 446, 189–200. https://doi.org/10.1016/j.memsci.2013.06.033
Fritzmann, C., Wiese, M., Melin, T., & Wessling, M. (2014). Helically microstructured spacers improve mass transfer and fractionation selectivity in ultrafiltration. Journal of Membrane Science, 463, 41–48. https://doi.org/10.1016/j.memsci.2014.03.059
Gu, B., Adjiman, C. S., & Xu, X. Y. (2017). The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. Journal of Membrane Science, 527, 78–91. https://doi.org/10.1016/j.memsci.2016.12.058
Hausman, R., Gullinkala, T., & Escobar, I. (2009). Development of Low-Biofouling Polypropylene Feedspacers for Reverse Osmosis. Journal of Applied Polymer Science, 114, 3068–3073. https://doi.org/10.1002/app.30755
Hwang, T., Kotte, M. R., Han, J.-I., Oh, Y.-K., & Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181–192. https://doi.org/10.1016/j.watres.2014.12.002
Hwang, T., Oh, Y.-K., Kim, B., & Han, J.-I. (2015). Dramatic improvement of membrane performance for microalgae harvesting with a simple bubble-generator plate. Bioresource Technology, 186, 343–347. https://doi.org/10.1016/j.biortech.2015.03.111
Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631–635. https://doi.org/10.1016/S0141-0229(00)00266-0
Kalacheva, G. S., Zhila, N. O., & Volova, T. G. (2002). Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36(2), 317–331. https://doi.org/10.1023/A:1015615618420
Kanchanatip, E., Su, B.-R., Tulaphol, S., Den, W., Grisdanurak, N., & Kuo, C.-C. (2016). Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane. Bioresource Technology, 209, 23–30. https://doi.org/10.1016/j.biortech.2016.02.081
Lau, A. K. S., Bilad, M. R., Nordin, N. A. H. M., Faungnawakij, K., Narkkun, T., Wang, D. K., Mahlia, T. M. I., & Jaafar, J. (2020). Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock. Renewable and Sustainable Energy Reviews, 120, 109666. https://doi.org/10.1016/j.rser.2019.109666
Lee, J.-Y., Tan, W. S., An, J., Chua, C. K., Tang, C. Y., Fane, A. G., & Chong, T. H. (2016). The potential to enhance membrane module design with 3D printing technology. Journal of Membrane Science, 499, 480–490. https://doi.org/10.1016/j.memsci.2015.11.008
Li, W., Chen, K. K., Wang, Y.-N., Krantz, W. B., Fane, A. G., & Tang, C. Y. (2016). A conceptual design of spacers with hairy structures for membrane processes. Journal of Membrane Science, 510, 314–325. https://doi.org/10.1016/j.memsci.2016.03.021
Liang, Y. Y., Chapman, M. B., Fimbres Weihs, G. A., & Wiley, D. E. (2014). CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. Journal of Membrane Science, 470, 378–388. https://doi.org/10.1016/j.memsci.2014.07.039
Liu, Jianxin, Liu, Z., Xu, X., & Liu, F. (2015). Saw-tooth spacer for membrane filtration: Hydrodynamic investigation by PIV and filtration experiment validation. Chemical Engineering and Processing: Process Intensification, 91, 23–34. https://doi.org/10.1016/j.cep.2015.03.013
Liu, Jiuqing, Iranshahi, A., Lou, Y., & Lipscomb, G. (2013). Static mixing spacers for spiral wound modules. Journal of Membrane Science, 442, 140–148. https://doi.org/10.1016/j.memsci.2013.03.063
Maeda, Y., Yoshino, T., Matsunaga, T., Matsumoto, M., & Tanaka, T. (2018). Marine microalgae for production of biofuels and chemicals. Current Opinion in Biotechnology, 50, 111–120. https://doi.org/10.1016/j.copbio.2017.11.018
Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281–291. https://doi.org/10.1007/s00253-009-1935-6
Marbelia, L., Bilad, M. R., Maes, S., Arafat, H. A., & Vankelecom, I. F. J. (2018). Poly(vinylidene fluoride)-Based Membranes for Microalgae Filtration. Chemical Engineering & Technology. https://doi.org/10.1002/ceat.201700622
Marbelia, L., Mulier, M., Vandamme, D., Muylaert, K., Szymczyk, A., & Vankelecom, I. F. J. (2016). Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling. Algal Research, 19, 128–137. https://doi.org/10.1016/j.algal.2016.08.004
Mata, T. M., Martins, A. A., & Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020
Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12(2), 165–178. https://doi.org/10.1007/s11157-012-9301-z
Molina Grima, E., Belarbi, E.-H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20(7), 491–515. https://doi.org/10.1016/S0734-9750(02)00050-2
Natrah, F. M. I., Yusoff, F. M., Shariff, M., Abas, F., & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19(6), 711–718. https://doi.org/10.1007/s10811-007-9192-5
Qari, H., Rehan, M., & Nizami, A.-S. (2017). Key Issues in Microalgae Biofuels: A Short Review. Energy Procedia, 142, 898–903. https://doi.org/10.1016/j.egypro.2017.12.144
Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125
Razak, N. N. A. N., Rahmawati, R., Bilad, M. R., Pratiwi, A. E., Elma, M., Nawi, N. I. M., Jaafar, J., & Lam, M. K. (2020). Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration. Bioresource Technology Reports, 11, 100429. https://doi.org/10.1016/j.biteb.2020.100429
Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112. https://doi.org/10.1002/bit.22033
Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67–73. https://doi.org/10.1016/S0961-9534(02)00028-4
Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2010). Heterotrophic Culture of Chlorella protothecoides in Various Nitrogen Sources for Lipid Production. Applied Biochemistry and Biotechnology, 160(6), 1674–1684. https://doi.org/10.1007/s12010-009-8659-z
Siddiqui, A., Farhat, N., Bucs, S. S., Linares, R. V., Picioreanu, C., Kruithof, J. C., van Loosdrecht, M. C. M., Kidwell, J., & Vrouwenvelder, J. S. (2016). Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Research, 91, 55–67. https://doi.org/10.1016/j.watres.2015.12.052
Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010
Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411. https://doi.org/10.1016/j.rser.2016.12.078
Tan, W. S., Chua, C. K., Chong, T. H., Fane, A. G., & Jia, A. (2016). 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. Virtual and Physical Prototyping, 11(3), 151–158. https://doi.org/10.1080/17452759.2016.1211925
Venault, A., Ballad, M. R. B., Huang, Y.-T., Liu, Y.-H., Kao, C.-H., & Chang, Y. (2016). Antifouling PVDF membrane prepared by VIPS for microalgae harvesting. Chemical Engineering Science, 142, 97–111. https://doi.org/10.1016/j.ces.2015.11.041
Verma, N. M., Mehrotra, S., Shukla, A., & Mishra, B. N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology, 9(10), 1402–1411. https://doi.org/10.5897/AJBx09.071
Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507. https://doi.org/10.1016/j.jbiotec.2006.05.002
Yanfen, L., Zehao, H., & Xiaoqian, M. (2012). Energy analysis and environmental impacts of microalgal biodiesel in China. Energy Policy, 45, 142–151. https://doi.org/10.1016/j.enpol.2012.02.007
Yang, H.-L., Lin, J. C.-T., & Huang, C. (2009). Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Research, 43(15), 3777–3786. https://doi.org/10.1016/j.watres.2009.06.002
Zhao, F., Chu, H., Su, Y., Tan, X., Zhang, Y., Yang, L., & Zhou, X. (2016). Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. Journal of Membrane Science, 508, 127–135. https://doi.org/10.1016/j.memsci.2016.02.007
Zhao, F., Chu, H., Tan, X., Yang, L., Su, Y., Zhou, X., Zhao, J., & Zhang, Y. (2016). Using axial vibration membrane process to mitigate membrane fouling and reject extracellular organic matter in microalgae harvesting. Journal of Membrane Science, 517, 30–38. https://doi.org/10.1016/j.memsci.2016.06.022
Zhao, F., Chu, H., Tan, X., Zhang, Y., Yang, L., Zhou, X., & Zhao, J. (2016). Comparison of axial vibration membrane and submerged aeration membrane in microalgae harvesting. Bioresource Technology, 208, 178–183. https://doi.org/10.1016/j.biortech.2016.02.099
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

