Progress in development of Membrane Fouling Control for Microalgae Filtration: a Review

Authors

  • Nik Nurul Ain Nabilah Razak Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak
  • Muhammad Roil Bilad (Scopus ID: 36999741400); Universitas Pendidikan Mandalika

DOI:

https://doi.org/10.36312/e-saintika.v5i1.424

Keywords:

microalgae harvesting, membrane filtration, membrane fouling, biofuel, renewable energy

Abstract

Microalgae biomass is an attractive feedstock for biofuels and other applications. Prior utilization the microalgae biomass must be harvested, a step that contributes largely to the overall energy and production costs. Membrane filtration is seen as a viable option for microalgae concentration. It is mainly attractive as primary step treating the diluted broth. However, its application is largely limited by membrane fouling that lowers overall process efficiency and productivity. This study provides an overview on the recent progress of the membrane technology particularly on technology to address the membrane fouling issue in microalgae filtration and upconcentration. Firstly, brief introduction of potential of microalgae biomass and membrane technology is provided. It followed by comprehensive overview of membrane fouling control approach. The membrane fouling control approaches are classified into optimization of operational parameters, membrane material development, hydrodynamic manipulation, improved module design and lastly module spacer development. Lastly, perspective on future research direction is also provided.

Downloads

Download data is not yet available.

Author Biography

Muhammad Roil Bilad, (Scopus ID: 36999741400); Universitas Pendidikan Mandalika

Scopus ID: 36999741400

References

Abid, H. S., Johnson, D. J., Hashaikeh, R., & Hilal, N. (2017). A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination, 420, 384–402. https://doi.org/10.1016/j.desal.2017.07.019

Alipourzadeh, A., Mehrnia, M. R., Sani, A. H., & Babaei, A. (2016). Application of response surface methodology for investigation of membrane fouling behaviours in microalgal membrane bioreactor: The effect of aeration rate and biomass concentration. RSC Advances, 6(112), 111182–111189. https://doi.org/10.1039/C6RA23188H

Amer, L., Adhikari, B., & Pellegrino, J. (2011). Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology, 102(20), 9350–9359. https://doi.org/10.1016/j.biortech.2011.08.010

Araújo, P. A., Miller, D. J., Correia, P. B., van Loosdrecht, M. C. M., Kruithof, J. C., Freeman, B. D., Paul, D. R., & Vrouwenvelder, J. S. (2012). Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination, 295, 1–10. https://doi.org/10.1016/j.desal.2012.02.026

Armbruster, S., Cheong, O., Lölsberg, J., Popovic, S., Yüce, S., & Wessling, M. (2018). Fouling mitigation in tubular membranes by 3D-printed turbulence promoters. Journal of Membrane Science, 554, 156–163. https://doi.org/10.1016/j.memsci.2018.02.015

Barros, A. I., Gonçalves, A. L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

Beilen, J. B. van. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels, Bioproducts and Biorefining, 4(1), 41–52. https://doi.org/10.1002/bbb.193

Bharathiraja, B., Chakravarthy, M., Ranjith Kumar, R., Yogendran, D., Yuvaraj, D., Jayamuthunagai, J., Praveen Kumar, R., & Palani, S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634–653. https://doi.org/10.1016/j.rser.2015.03.047

Bilad, M. R., Arafat, H. A., & Vankelecom, I. F. J. (2014). Membrane technology in microalgae cultivation and harvesting: A review. Biotechnology Advances, 32(7), 1283–1300. https://doi.org/10.1016/j.biotechadv.2014.07.008

Bilad, M. R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2013). Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresource Technology, 138, 329–338. https://doi.org/10.1016/j.biortech.2013.03.175

Bilad, M. R., Marbelia, L., Naik, P., Laine, C., & Vankelecom, I. F. J. (2014). Direct comparison of aerated and vibrated filtration systems for harvesting of Chlorella vulgaris. Algal Research, 6, 32–38. https://doi.org/10.1016/j.algal.2014.09.001

Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., & Vankelecom, I. F. J. (2012). Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 111, 343–352. https://doi.org/10.1016/j.biortech.2012.02.009

Castel, C., & Favre, E. (2018). Membrane separations and energy efficiency. Journal of Membrane Science, 548, 345–357. https://doi.org/10.1016/j.memsci.2017.11.035

Chen, X., Huang, C., & Liu, T. (2012). Harvesting of microalgae Scenedesmus sp. Using polyvinylidene fluoride microfiltration membrane. Desalination and Water Treatment, 45(1–3), 177–181. https://doi.org/10.1080/19443994.2012.692034

Chin, H. J., Shen, T. F., Su, H. P., & Ding, S. T. (2006). Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: Optimal growth and use as a dietary supplement for laying hens. Australian Journal of Agricultural Research, 57(1), 13. https://doi.org/10.1071/AR05099

Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838. https://doi.org/10.1016/j.biortech.2008.06.061

Demirbas, A., & Demirbas, M. F. (2010). Algae Energy: Algae as a New Source of Biodiesel. Springer-Verlag. https://www.springer.com/gp/book/9781849960496

Discart, V., Bilad, M. R., Moorkens, R., Arafat, H., & Vankelecom, I. F. J. (2015). Decreasing membrane fouling during Chlorella vulgaris broth filtration via membrane development and coagulant assisted filtration. Algal Research, 9, 55–64. https://doi.org/10.1016/j.algal.2015.02.029

Eliseus, A., Bilad, M. R., Nordin, N. A. H. M., Putra, Z. A., & Wirzal, M. D. H. (2017). Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresource Technology, 241, 661–668. https://doi.org/10.1016/j.biortech.2017.05.175

Frappart, M., Massé, A., Jaffrin, M. Y., Pruvost, J., & Jaouen, P. (2011). Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination, 265(1), 279–283. https://doi.org/10.1016/j.desal.2010.07.061

Fritzmann, C., Hausmann, M., Wiese, M., Wessling, M., & Melin, T. (2013). Microstructured spacers for submerged membrane filtration systems. Journal of Membrane Science, 446, 189–200. https://doi.org/10.1016/j.memsci.2013.06.033

Fritzmann, C., Wiese, M., Melin, T., & Wessling, M. (2014). Helically microstructured spacers improve mass transfer and fractionation selectivity in ultrafiltration. Journal of Membrane Science, 463, 41–48. https://doi.org/10.1016/j.memsci.2014.03.059

Gu, B., Adjiman, C. S., & Xu, X. Y. (2017). The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. Journal of Membrane Science, 527, 78–91. https://doi.org/10.1016/j.memsci.2016.12.058

Hausman, R., Gullinkala, T., & Escobar, I. (2009). Development of Low-Biofouling Polypropylene Feedspacers for Reverse Osmosis. Journal of Applied Polymer Science, 114, 3068–3073. https://doi.org/10.1002/app.30755

Hwang, T., Kotte, M. R., Han, J.-I., Oh, Y.-K., & Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181–192. https://doi.org/10.1016/j.watres.2014.12.002

Hwang, T., Oh, Y.-K., Kim, B., & Han, J.-I. (2015). Dramatic improvement of membrane performance for microalgae harvesting with a simple bubble-generator plate. Bioresource Technology, 186, 343–347. https://doi.org/10.1016/j.biortech.2015.03.111

Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631–635. https://doi.org/10.1016/S0141-0229(00)00266-0

Kalacheva, G. S., Zhila, N. O., & Volova, T. G. (2002). Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus. Aquatic Ecology, 36(2), 317–331. https://doi.org/10.1023/A:1015615618420

Kanchanatip, E., Su, B.-R., Tulaphol, S., Den, W., Grisdanurak, N., & Kuo, C.-C. (2016). Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane. Bioresource Technology, 209, 23–30. https://doi.org/10.1016/j.biortech.2016.02.081

Lau, A. K. S., Bilad, M. R., Nordin, N. A. H. M., Faungnawakij, K., Narkkun, T., Wang, D. K., Mahlia, T. M. I., & Jaafar, J. (2020). Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock. Renewable and Sustainable Energy Reviews, 120, 109666. https://doi.org/10.1016/j.rser.2019.109666

Lee, J.-Y., Tan, W. S., An, J., Chua, C. K., Tang, C. Y., Fane, A. G., & Chong, T. H. (2016). The potential to enhance membrane module design with 3D printing technology. Journal of Membrane Science, 499, 480–490. https://doi.org/10.1016/j.memsci.2015.11.008

Li, W., Chen, K. K., Wang, Y.-N., Krantz, W. B., Fane, A. G., & Tang, C. Y. (2016). A conceptual design of spacers with hairy structures for membrane processes. Journal of Membrane Science, 510, 314–325. https://doi.org/10.1016/j.memsci.2016.03.021

Liang, Y. Y., Chapman, M. B., Fimbres Weihs, G. A., & Wiley, D. E. (2014). CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. Journal of Membrane Science, 470, 378–388. https://doi.org/10.1016/j.memsci.2014.07.039

Liu, Jianxin, Liu, Z., Xu, X., & Liu, F. (2015). Saw-tooth spacer for membrane filtration: Hydrodynamic investigation by PIV and filtration experiment validation. Chemical Engineering and Processing: Process Intensification, 91, 23–34. https://doi.org/10.1016/j.cep.2015.03.013

Liu, Jiuqing, Iranshahi, A., Lou, Y., & Lipscomb, G. (2013). Static mixing spacers for spiral wound modules. Journal of Membrane Science, 442, 140–148. https://doi.org/10.1016/j.memsci.2013.03.063

Maeda, Y., Yoshino, T., Matsunaga, T., Matsumoto, M., & Tanaka, T. (2018). Marine microalgae for production of biofuels and chemicals. Current Opinion in Biotechnology, 50, 111–120. https://doi.org/10.1016/j.copbio.2017.11.018

Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281–291. https://doi.org/10.1007/s00253-009-1935-6

Marbelia, L., Bilad, M. R., Maes, S., Arafat, H. A., & Vankelecom, I. F. J. (2018). Poly(vinylidene fluoride)-Based Membranes for Microalgae Filtration. Chemical Engineering & Technology. https://doi.org/10.1002/ceat.201700622

Marbelia, L., Mulier, M., Vandamme, D., Muylaert, K., Szymczyk, A., & Vankelecom, I. F. J. (2016). Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling. Algal Research, 19, 128–137. https://doi.org/10.1016/j.algal.2016.08.004

Mata, T. M., Martins, A. A., & Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Milledge, J. J., & Heaven, S. (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12(2), 165–178. https://doi.org/10.1007/s11157-012-9301-z

Molina Grima, E., Belarbi, E.-H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances, 20(7), 491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

Natrah, F. M. I., Yusoff, F. M., Shariff, M., Abas, F., & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19(6), 711–718. https://doi.org/10.1007/s10811-007-9192-5

Qari, H., Rehan, M., & Nizami, A.-S. (2017). Key Issues in Microalgae Biofuels: A Short Review. Energy Procedia, 142, 898–903. https://doi.org/10.1016/j.egypro.2017.12.144

Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125

Razak, N. N. A. N., Rahmawati, R., Bilad, M. R., Pratiwi, A. E., Elma, M., Nawi, N. I. M., Jaafar, J., & Lam, M. K. (2020). Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration. Bioresource Technology Reports, 11, 100429. https://doi.org/10.1016/j.biteb.2020.100429

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112. https://doi.org/10.1002/bit.22033

Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67–73. https://doi.org/10.1016/S0961-9534(02)00028-4

Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2010). Heterotrophic Culture of Chlorella protothecoides in Various Nitrogen Sources for Lipid Production. Applied Biochemistry and Biotechnology, 160(6), 1674–1684. https://doi.org/10.1007/s12010-009-8659-z

Siddiqui, A., Farhat, N., Bucs, S. S., Linares, R. V., Picioreanu, C., Kruithof, J. C., van Loosdrecht, M. C. M., Kidwell, J., & Vrouwenvelder, J. S. (2016). Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Research, 91, 55–67. https://doi.org/10.1016/j.watres.2015.12.052

Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010

Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402–411. https://doi.org/10.1016/j.rser.2016.12.078

Tan, W. S., Chua, C. K., Chong, T. H., Fane, A. G., & Jia, A. (2016). 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. Virtual and Physical Prototyping, 11(3), 151–158. https://doi.org/10.1080/17452759.2016.1211925

Venault, A., Ballad, M. R. B., Huang, Y.-T., Liu, Y.-H., Kao, C.-H., & Chang, Y. (2016). Antifouling PVDF membrane prepared by VIPS for microalgae harvesting. Chemical Engineering Science, 142, 97–111. https://doi.org/10.1016/j.ces.2015.11.041

Verma, N. M., Mehrotra, S., Shukla, A., & Mishra, B. N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology, 9(10), 1402–1411. https://doi.org/10.5897/AJBx09.071

Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507. https://doi.org/10.1016/j.jbiotec.2006.05.002

Yanfen, L., Zehao, H., & Xiaoqian, M. (2012). Energy analysis and environmental impacts of microalgal biodiesel in China. Energy Policy, 45, 142–151. https://doi.org/10.1016/j.enpol.2012.02.007

Yang, H.-L., Lin, J. C.-T., & Huang, C. (2009). Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Research, 43(15), 3777–3786. https://doi.org/10.1016/j.watres.2009.06.002

Zhao, F., Chu, H., Su, Y., Tan, X., Zhang, Y., Yang, L., & Zhou, X. (2016). Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. Journal of Membrane Science, 508, 127–135. https://doi.org/10.1016/j.memsci.2016.02.007

Zhao, F., Chu, H., Tan, X., Yang, L., Su, Y., Zhou, X., Zhao, J., & Zhang, Y. (2016). Using axial vibration membrane process to mitigate membrane fouling and reject extracellular organic matter in microalgae harvesting. Journal of Membrane Science, 517, 30–38. https://doi.org/10.1016/j.memsci.2016.06.022

Zhao, F., Chu, H., Tan, X., Zhang, Y., Yang, L., Zhou, X., & Zhao, J. (2016). Comparison of axial vibration membrane and submerged aeration membrane in microalgae harvesting. Bioresource Technology, 208, 178–183. https://doi.org/10.1016/j.biortech.2016.02.099

Downloads

Published

2021-03-30

How to Cite

Razak, N. N. A. N., & Bilad, M. R. (2021). Progress in development of Membrane Fouling Control for Microalgae Filtration: a Review. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 5(1), 67–91. https://doi.org/10.36312/e-saintika.v5i1.424

Issue

Section

Natural and Applied Sciences