Fabrication and Characterization of Supported Porous Au Nanoparticles

Authors

DOI:

https://doi.org/10.36312/e-saintika.v9i1.2427

Keywords:

nanoplasmonics, LSPR, dealloying, sensing, catalysis, nanotechnology

Abstract

Porous plasmonic nanoparticles offer unique advantages for sensing and catalysis due to their high surface-to-volume ratio and localized electromagnetic field enhancements at nanoscale pores, or “hotspots.” However, current fabrication techniques, which are based on colloidal synthesis, face challenges in achieving precise control over particle size, shape, and porosity. Here, we present a robust nanofabrication method to produce supported arrays of porous Au nanoparticles with excellent dimensional and compositional control. By combining lithographically patterned AuAg alloy nanoparticles and selective dealloying via nitric acid, we achieve particle porosity without compromising particle morphology. Specifically, the method allows fabrication of supported porous nanoparticles with tunable dimension and porosity. Our approach demonstrates precise control of nanoparticle porosity by varying the initial Ag content in the alloy. Optical characterization reveals a blueshift in the extinction peak with increasing porosity, attributed to the reduced effective refractive index from intraparticle voids. Notably, a tunable shift of up to 100 nm in the plasmonic peak is observed, demonstrating the potential for fine-tuning optical properties. This study highlights the versatility of the proposed method in fabricating well-defined porous plasmonic nanoparticles and their ability to modulate optical properties through porosity control. These findings not only expand the toolkit for designing advanced plasmonic materials but also open pathways for applications in plasmon-mediated sensing, catalysis, and photonic devices.

Downloads

Download data is not yet available.

References

Alekseeva, S., Nedrygailov, I. I., & Langhammer, C. (2019). Single Particle Plasmonics for Materials Science and Single Particle Catalysis. In ACS Photonics (Vol. 6, Issue 6, pp. 1319–1330). https://doi.org/10.1021/acsphotonics.9b00339

Becerril?Castro, I. B., Calderon, I., Pazos?Perez, N., Guerrini, L., Schulz, F., Feliu, N., Chakraborty, I., Giannini, V., Parak, W. J., & Alvarez?Puebla, R. A. (2022). Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing, 2(3). https://doi.org/10.1002/anse.202200005

Bohren, C. F. (1983). How can a particle absorb more than the light incident on it? American Journal of Physics, 51(4), 323. https://doi.org/10.1119/1.13262

Christopher, P., Xin, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3(6), 467–472. https://doi.org/10.1038/nchem.1032

Darmadi, I., Anggoro, F., Nugroho, A., & Langhammer, C. (2020). High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation. ACS Sensors, 5(11), 3306–3327. https://doi.org/10.1021/acssensors.0c02019

Dolia, V., Balch, H. B., Dagli, S., Abdollahramezani, S., Carr Delgado, H., Moradifar, P., Chang, K., Stiber, A., Safir, F., Lawrence, M., Hu, J., & Dionne, J. A. (2024). Very-large-scale-integrated high quality factor nanoantenna pixels. Nature Nanotechnology, 19(9), 1290–1298. https://doi.org/10.1038/s41565-024-01697-z

Fredriksson, H., Alaverdyan, Y., Dmitriev, A., Langhammer, C., Sutherland, D. S., Zäch, M., & Kasemo, B. (2007). Hole-mask colloidal lithography. Advanced Materials, 19(23), 4297–4302. https://doi.org/10.1002/adma.200700680

Fusco, Z., Rahmani, M., Tran?Phu, T., Ricci, C., Kiy, A., Kluth, P., Della Gaspera, E., Motta, N., Neshev, D., & Tricoli, A. (2020). Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile?Compound Sensing Performance. Advanced Materials, 32(50), 2002471. https://doi.org/10.1002/adma.202002471

Gong, C., & Leite, M. S. (2016). Noble Metal Alloys for Plasmonics. ACS Photonics, 3(4), 507–513. https://doi.org/10.1021/acsphotonics.5b00586

Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J., & Kanaras, A. G. (2019). The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 119(8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733

Kadkhodazadeh, S., Nugroho, F. A. A., Langhammer, C., Beleggia, M., & Wagner, J. B. (2019). Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics, 6(3), 779–786. https://doi.org/10.1021/acsphotonics.8b01791

Knight, M. W., King, N. S., Liu, L., Everitt, H. O., Nordlander, P., & Halas, N. J. (2014). Aluminum for Plasmonics. ACS Nano, 8(1), 834–840. https://doi.org/10.1021/nn405495q

Koya, A. N., Zhu, X., Ohannesian, N., Yanik, A. A., Alabastri, A., Proietti Zaccaria, R., Krahne, R., Shih, W.-C., & Garoli, D. (2021). Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano, 15(4), 6038–6060. https://doi.org/10.1021/acsnano.0c10945

Langhammer, C., Yuan, Z., Zori?, I., & Kasemo, B. (2006). Plasmonic properties of supported Pt and Pd nanostructures. Nano Letters, 6(4), 833–838. https://doi.org/10.1021/nl060219x

Liu, K., Bai, Y., Zhang, L., Yang, Z., Fan, Q., Zheng, H., Yin, Y., & Gao, C. (2016). Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 16(6), 3675–3681. https://doi.org/10.1021/acs.nanolett.6b00868

Liu, N., Liu, H., Zhu, S., & Giessen, H. (2009). Stereometamaterials. Nature Photonics, 3(3), 157–162. https://doi.org/10.1038/nphoton.2009.4

Nugroho, F. A. A., Bai, P., Darmadi, I., Castellanos, G. W., Fritzsche, J., Langhammer, C., Gómez Rivas, J., & Baldi, A. (2022). Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications, 13(1), 5737. https://doi.org/10.1038/s41467-022-33466-8

Nugroho, F. A. A., Darmadi, I., Cusinato, L., Susarrey-Arce, A., Schreuders, H., Bannenberg, L. J., da Silva Fanta, A. B., Kadkhodazadeh, S., Wagner, J. B., Antosiewicz, T. J., Hellman, A., Zhdanov, V. P., Dam, B., & Langhammer, C. (2019). Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nature Materials, 18, 489–495. https://doi.org/10.1038/s41563-019-0325-4

Nugroho, F. A. A., Darmadi, I., Zhdanov, V. P., & Langhammer, C. (2018). Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles. ACS Nano, 12(10), 9903–9912. https://doi.org/10.1021/acsnano.8b02835

Nugroho, F. A. A., Iandolo, B., Wagner, J. B., & Langhammer, C. (2016a). Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano, 10(2), 2871–2879. https://doi.org/10.1021/acsnano.5b08057

Nugroho, F. A. A., Iandolo, B., Wagner, J. B., & Langhammer, C. (2016b). Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano, 10(2), 2871–2879. https://doi.org/10.1021/acsnano.5b08057

Pincella, F., Isozaki, K., & Miki, K. (2014). A visible light-driven plasmonic photocatalyst. Light: Science & Applications, 3(1), e133. https://doi.org/10.1038/lsa.2014.14

Rahm, J. M., Tiburski, C., Rossi, T. P., Nugroho, F. A. A., Nilsson, S., Langhammer, C., & Erhart, P. (2020). A Library of Late Transition Metal Alloy Dielectric Functions for Nanophotonic Applications. Advanced Functional Materials, 30(35), 2002122. https://doi.org/10.1002/adfm.202002122

Rioux, D., & Meunier, M. (2015). Seeded Growth Synthesis of Composition and Size-Controlled Gold–Silver Alloy Nanoparticles. The Journal of Physical Chemistry C, 119(23), 13160–13168. https://doi.org/10.1021/acs.jpcc.5b02728

Swearer, D. F., Zhao, H., Zhou, L., Zhang, C., Robatjazi, H., Martirez, J. M. P., Krauter, C. M., Yazdi, S., McClain, M. J., Ringe, E., Carter, E. A., Nordlander, P., & Halas, N. J. (2016). Heterometallic antenna-reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 8916–8920. https://doi.org/10.1073/pnas.1609769113

Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D. Y., Neshev, D. N., Kivshar, Y. S., & Altug, H. (2018). Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360(6393), 1105–1109. https://doi.org/10.1126/science.aas9768

Vassileva, Ev., Mihaylov, L., Lyubenova, L., Spassov, T., Scaglione, F., & Rizzi, P. (2023). Porous metallic structures by dealloying amorphous alloys. Journal of Alloys and Compounds, 969, 172417. https://doi.org/10.1016/j.jallcom.2023.172417

Wadell, C., Nugroho, F. A. A., Lidström, E., Iandolo, B., Wagner, J. B., & Langhammer, C. (2015). Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors. Nano Letters, 15(5), 3563–3570. https://doi.org/10.1021/acs.nanolett.5b01053

Wang, D., & Schaaf, P. (2012). Nanoporous gold nanoparticles. Journal of Materials Chemistry, 22(12), 5344. https://doi.org/10.1039/c2jm15727f

Yuan, Y., Zhou, L., Robatjazi, H., Bao, J. L., Zhou, J., Bayles, A., Yuan, L., Lou, M., Lou, M., Khatiwada, S., Carter, E. A., Nordlander, P., & Halas, N. J. (2022). Earth-abundant photocatalyst for H 2 generation from NH 3 with light-emitting diode illumination. Science, 378(6622), 889–893. https://doi.org/10.1126/science.abn5636

Zhang, Q., Large, N., Nordlander, P., & Wang, H. (2014). Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. The Journal of Physical Chemistry Letters, 5(2), 370–374. https://doi.org/10.1021/jz402795x

Zhang, T., Sun, Y., Hang, L., Li, H., Liu, G., Zhang, X., Lyu, X., Cai, W., & Li, Y. (2018). Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Interfaces, 10(11), 9792–9801. https://doi.org/10.1021/acsami.7b17461

Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L., & Wang, J. (2021). Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 121(21), 13342–13453. https://doi.org/10.1021/acs.chemrev.1c00422

Zheng, M., Shen, Y., Zou, Q., Huang, Y., Huang, K., She, X., & Jin, C. (2023). Moisture?Driven Switching of Plasmonic Bound States in the Continuum in the Visible Region. Advanced Functional Materials, 33(3). https://doi.org/10.1002/adfm.202209368

Zhou, L., Martirez, J. M. P., Finzel, J., Zhang, C., Swearer, D. F., Tian, S., Robatjazi, H., Lou, M., Dong, L., Henderson, L., Christopher, P., Carter, E. A., Nordlander, P., & Halas, N. J. (2020). Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy, 5(1), 61–70. https://doi.org/10.1038/s41560-019-0517-9

Zhou, L., Swearer, D. F., Zhang, C., Robatjazi, H., Zhao, H., Henderson, L., Dong, L., Christopher, P., Carter, E. A., Nordlander, P., & Halas, N. J. (2018). Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science (New York, N.Y.), 362(6410), 69–72. https://doi.org/10.1126/science.aat6967

Downloads

Published

2025-01-01

How to Cite

Nugroho, F. A. A. (2025). Fabrication and Characterization of Supported Porous Au Nanoparticles. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 9(1), 1–12. https://doi.org/10.36312/e-saintika.v9i1.2427

Issue

Section

Original Research Article