Fabrication and Characterization of Supported Porous Au Nanoparticles
DOI:
https://doi.org/10.36312/e-saintika.v9i1.2427Keywords:
nanoplasmonics, LSPR, dealloying, sensing, catalysis, nanotechnologyAbstract
Porous plasmonic nanoparticles offer unique advantages for sensing and catalysis due to their high surface-to-volume ratio and localized electromagnetic field enhancements at nanoscale pores, or “hotspots.” However, current fabrication techniques, which are based on colloidal synthesis, face challenges in achieving precise control over particle size, shape, and porosity. Here, we present a robust nanofabrication method to produce supported arrays of porous Au nanoparticles with excellent dimensional and compositional control. By combining lithographically patterned AuAg alloy nanoparticles and selective dealloying via nitric acid, we achieve particle porosity without compromising particle morphology. Specifically, the method allows fabrication of supported porous nanoparticles with tunable dimension and porosity. Our approach demonstrates precise control of nanoparticle porosity by varying the initial Ag content in the alloy. Optical characterization reveals a blueshift in the extinction peak with increasing porosity, attributed to the reduced effective refractive index from intraparticle voids. Notably, a tunable shift of up to 100 nm in the plasmonic peak is observed, demonstrating the potential for fine-tuning optical properties. This study highlights the versatility of the proposed method in fabricating well-defined porous plasmonic nanoparticles and their ability to modulate optical properties through porosity control. These findings not only expand the toolkit for designing advanced plasmonic materials but also open pathways for applications in plasmon-mediated sensing, catalysis, and photonic devices.
Downloads
References
Alekseeva, S., Nedrygailov, I. I., & Langhammer, C. (2019). Single Particle Plasmonics for Materials Science and Single Particle Catalysis. In ACS Photonics (Vol. 6, Issue 6, pp. 1319–1330). https://doi.org/10.1021/acsphotonics.9b00339
Becerril?Castro, I. B., Calderon, I., Pazos?Perez, N., Guerrini, L., Schulz, F., Feliu, N., Chakraborty, I., Giannini, V., Parak, W. J., & Alvarez?Puebla, R. A. (2022). Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing, 2(3). https://doi.org/10.1002/anse.202200005
Bohren, C. F. (1983). How can a particle absorb more than the light incident on it? American Journal of Physics, 51(4), 323. https://doi.org/10.1119/1.13262
Christopher, P., Xin, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3(6), 467–472. https://doi.org/10.1038/nchem.1032
Darmadi, I., Anggoro, F., Nugroho, A., & Langhammer, C. (2020). High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation. ACS Sensors, 5(11), 3306–3327. https://doi.org/10.1021/acssensors.0c02019
Dolia, V., Balch, H. B., Dagli, S., Abdollahramezani, S., Carr Delgado, H., Moradifar, P., Chang, K., Stiber, A., Safir, F., Lawrence, M., Hu, J., & Dionne, J. A. (2024). Very-large-scale-integrated high quality factor nanoantenna pixels. Nature Nanotechnology, 19(9), 1290–1298. https://doi.org/10.1038/s41565-024-01697-z
Fredriksson, H., Alaverdyan, Y., Dmitriev, A., Langhammer, C., Sutherland, D. S., Zäch, M., & Kasemo, B. (2007). Hole-mask colloidal lithography. Advanced Materials, 19(23), 4297–4302. https://doi.org/10.1002/adma.200700680
Fusco, Z., Rahmani, M., Tran?Phu, T., Ricci, C., Kiy, A., Kluth, P., Della Gaspera, E., Motta, N., Neshev, D., & Tricoli, A. (2020). Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile?Compound Sensing Performance. Advanced Materials, 32(50), 2002471. https://doi.org/10.1002/adma.202002471
Gong, C., & Leite, M. S. (2016). Noble Metal Alloys for Plasmonics. ACS Photonics, 3(4), 507–513. https://doi.org/10.1021/acsphotonics.5b00586
Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J., & Kanaras, A. G. (2019). The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 119(8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733
Kadkhodazadeh, S., Nugroho, F. A. A., Langhammer, C., Beleggia, M., & Wagner, J. B. (2019). Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics, 6(3), 779–786. https://doi.org/10.1021/acsphotonics.8b01791
Knight, M. W., King, N. S., Liu, L., Everitt, H. O., Nordlander, P., & Halas, N. J. (2014). Aluminum for Plasmonics. ACS Nano, 8(1), 834–840. https://doi.org/10.1021/nn405495q
Koya, A. N., Zhu, X., Ohannesian, N., Yanik, A. A., Alabastri, A., Proietti Zaccaria, R., Krahne, R., Shih, W.-C., & Garoli, D. (2021). Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano, 15(4), 6038–6060. https://doi.org/10.1021/acsnano.0c10945
Langhammer, C., Yuan, Z., Zori?, I., & Kasemo, B. (2006). Plasmonic properties of supported Pt and Pd nanostructures. Nano Letters, 6(4), 833–838. https://doi.org/10.1021/nl060219x
Liu, K., Bai, Y., Zhang, L., Yang, Z., Fan, Q., Zheng, H., Yin, Y., & Gao, C. (2016). Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Letters, 16(6), 3675–3681. https://doi.org/10.1021/acs.nanolett.6b00868
Liu, N., Liu, H., Zhu, S., & Giessen, H. (2009). Stereometamaterials. Nature Photonics, 3(3), 157–162. https://doi.org/10.1038/nphoton.2009.4
Nugroho, F. A. A., Bai, P., Darmadi, I., Castellanos, G. W., Fritzsche, J., Langhammer, C., Gómez Rivas, J., & Baldi, A. (2022). Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications, 13(1), 5737. https://doi.org/10.1038/s41467-022-33466-8
Nugroho, F. A. A., Darmadi, I., Cusinato, L., Susarrey-Arce, A., Schreuders, H., Bannenberg, L. J., da Silva Fanta, A. B., Kadkhodazadeh, S., Wagner, J. B., Antosiewicz, T. J., Hellman, A., Zhdanov, V. P., Dam, B., & Langhammer, C. (2019). Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nature Materials, 18, 489–495. https://doi.org/10.1038/s41563-019-0325-4
Nugroho, F. A. A., Darmadi, I., Zhdanov, V. P., & Langhammer, C. (2018). Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles. ACS Nano, 12(10), 9903–9912. https://doi.org/10.1021/acsnano.8b02835
Nugroho, F. A. A., Iandolo, B., Wagner, J. B., & Langhammer, C. (2016a). Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano, 10(2), 2871–2879. https://doi.org/10.1021/acsnano.5b08057
Nugroho, F. A. A., Iandolo, B., Wagner, J. B., & Langhammer, C. (2016b). Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics. ACS Nano, 10(2), 2871–2879. https://doi.org/10.1021/acsnano.5b08057
Pincella, F., Isozaki, K., & Miki, K. (2014). A visible light-driven plasmonic photocatalyst. Light: Science & Applications, 3(1), e133. https://doi.org/10.1038/lsa.2014.14
Rahm, J. M., Tiburski, C., Rossi, T. P., Nugroho, F. A. A., Nilsson, S., Langhammer, C., & Erhart, P. (2020). A Library of Late Transition Metal Alloy Dielectric Functions for Nanophotonic Applications. Advanced Functional Materials, 30(35), 2002122. https://doi.org/10.1002/adfm.202002122
Rioux, D., & Meunier, M. (2015). Seeded Growth Synthesis of Composition and Size-Controlled Gold–Silver Alloy Nanoparticles. The Journal of Physical Chemistry C, 119(23), 13160–13168. https://doi.org/10.1021/acs.jpcc.5b02728
Swearer, D. F., Zhao, H., Zhou, L., Zhang, C., Robatjazi, H., Martirez, J. M. P., Krauter, C. M., Yazdi, S., McClain, M. J., Ringe, E., Carter, E. A., Nordlander, P., & Halas, N. J. (2016). Heterometallic antenna-reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 8916–8920. https://doi.org/10.1073/pnas.1609769113
Tittl, A., Leitis, A., Liu, M., Yesilkoy, F., Choi, D. Y., Neshev, D. N., Kivshar, Y. S., & Altug, H. (2018). Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360(6393), 1105–1109. https://doi.org/10.1126/science.aas9768
Vassileva, Ev., Mihaylov, L., Lyubenova, L., Spassov, T., Scaglione, F., & Rizzi, P. (2023). Porous metallic structures by dealloying amorphous alloys. Journal of Alloys and Compounds, 969, 172417. https://doi.org/10.1016/j.jallcom.2023.172417
Wadell, C., Nugroho, F. A. A., Lidström, E., Iandolo, B., Wagner, J. B., & Langhammer, C. (2015). Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors. Nano Letters, 15(5), 3563–3570. https://doi.org/10.1021/acs.nanolett.5b01053
Wang, D., & Schaaf, P. (2012). Nanoporous gold nanoparticles. Journal of Materials Chemistry, 22(12), 5344. https://doi.org/10.1039/c2jm15727f
Yuan, Y., Zhou, L., Robatjazi, H., Bao, J. L., Zhou, J., Bayles, A., Yuan, L., Lou, M., Lou, M., Khatiwada, S., Carter, E. A., Nordlander, P., & Halas, N. J. (2022). Earth-abundant photocatalyst for H 2 generation from NH 3 with light-emitting diode illumination. Science, 378(6622), 889–893. https://doi.org/10.1126/science.abn5636
Zhang, Q., Large, N., Nordlander, P., & Wang, H. (2014). Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. The Journal of Physical Chemistry Letters, 5(2), 370–374. https://doi.org/10.1021/jz402795x
Zhang, T., Sun, Y., Hang, L., Li, H., Liu, G., Zhang, X., Lyu, X., Cai, W., & Li, Y. (2018). Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Interfaces, 10(11), 9792–9801. https://doi.org/10.1021/acsami.7b17461
Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L., & Wang, J. (2021). Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 121(21), 13342–13453. https://doi.org/10.1021/acs.chemrev.1c00422
Zheng, M., Shen, Y., Zou, Q., Huang, Y., Huang, K., She, X., & Jin, C. (2023). Moisture?Driven Switching of Plasmonic Bound States in the Continuum in the Visible Region. Advanced Functional Materials, 33(3). https://doi.org/10.1002/adfm.202209368
Zhou, L., Martirez, J. M. P., Finzel, J., Zhang, C., Swearer, D. F., Tian, S., Robatjazi, H., Lou, M., Dong, L., Henderson, L., Christopher, P., Carter, E. A., Nordlander, P., & Halas, N. J. (2020). Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy, 5(1), 61–70. https://doi.org/10.1038/s41560-019-0517-9
Zhou, L., Swearer, D. F., Zhang, C., Robatjazi, H., Zhao, H., Henderson, L., Dong, L., Christopher, P., Carter, E. A., Nordlander, P., & Halas, N. J. (2018). Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science (New York, N.Y.), 362(6410), 69–72. https://doi.org/10.1126/science.aat6967
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ferry Anggoro Ardy Nugroho

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

