Bukti yang Membuktikan dan Bukti yang Menjelaskan dalam Kelas Matematika

Authors

  • Deni Hamdani Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Mataram. Jl. Majapahit No. 62, Mataram, West Nusa Tenggara, 83115
  • J. Junaidi Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Mataram. Jl. Majapahit No. 62, Mataram, West Nusa Tenggara, 83115
  • Dwi Novitasari Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Mataram. Jl. Majapahit No. 62, Mataram, West Nusa Tenggara, 83115
  • Nilza Humaira Salsabila Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Mataram. Jl. Majapahit No. 62, Mataram, West Nusa Tenggara, 83115
  • Ratna Yulis Tyaningsih Mathematics Education Department, Faculty of Teacher Training and Education, Universitas Mataram. Jl. Majapahit No. 62, Mataram, West Nusa Tenggara, 83115

DOI:

https://doi.org/10.36312/e-saintika.v4i2.253

Keywords:

Bukti yang Membuktikan, Bukti yang Menjelaskan, Proofs that Prove, Proofs that Explain

Abstract

Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.

Proofs that Prove and Proofs that Explain in Mathematics Classroom

Abstract

The purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.

Downloads

Download data is not yet available.

References

Balacheff, N. (1991). The Benefits and Limits of Social Interaction: The Case of Mathematical Proof. (Alan J. Bi, pp. 175–192). Kluwer Academic Publishers,Mathematics education library. hal-01550051. https://doi.org/10.1007/978-94-017-2195-0_9

Balacheff, N. (2017). A study of students’ proving processes at the junior high school level. Proceedings of the Second UCSMP International Conference on Mathematics Education, December, 284–297.

Bartle, R. G., & Sherbert, D. R. (2011). Introduction to Real Analysis (Fourth Edi). John Wiley & Sons, Inc.

de Villiers, M. (1990). The role and function of proof in Mathematics. Pythagoras.

de Villiers, M. (2010). Experimentation and proof in mathematics. In Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. https://doi.org/10.1007/978-1-4419-0576-5_14

Devlin, K. (2003). Sets, Functions, and Logic: An Introduction to Abstract Mathematics. In Sets, Functions, and Logic (Third Edit). CRC Press.

Dumas, B. A., & McCarthy, J. E. (2015). Transition to Higher Mathematics: Structure and Proof (Second Edition). In Creative Commons Attribu- tion, NonCommercial License. https://doi.org/10.7936/K7Z899HJ

Gilbert, L., & Gilbert, J. (2009). Elements of Modern Algebra (Seventh Ed, Issue 1). Brooks/Cole: Cengage Learning. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange. https://doi.org/10.1007/BF01809605

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics. https://doi.org/10.1023/A:1012737223465

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second Handbook of Research on Mathematics Teaching and Learning. https://doi.org/10.4324/9780203882009

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651

Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction, 24(1), 73–122. https://doi.org/10.1207/s1532690xci2401_2

Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49, 283–312. https://doi.org/10.1023/A:1020264906740

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics. https://doi.org/10.1007/BF01273372

Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning and Instruction, 18, 54–65. https://doi.org/10.1016/j.learninstruc.2006.10.008

Jahnke, H. N. (2010). The conjoint origin of proof and theoretical physics. In Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. https://doi.org/10.1007/978-1-4419-0576-5_2

Koshy, T. (2007). Elementary Number Theory with Applications Second Edition (Second). Elsevier Inc.

Krantz, S. G. (2007). The History and Concept of Mathematical Proof. In The History and Concept of Mathematical Proof.

Kunimune, S., Fujita, T., & Jones, K. (2009). “Why do we have to prove this?†Fostering students’ understanding of ‘proof’ in geometry in lower secondary school. ICMI Study 19: Proof and Proving in Mathematics Education.

Morash, R. P. (1987). Bridge to abstract mathematics: Mathematical Proof and Structures. In Choice Reviews Online (Vol. 50, Issue 06). Random House, Inc. https://doi.org/10.5860/choice.50-3317

NCTM. (2000). Principles and Standards for School Mathematics. In School Science and Mathematics. The Council.

Purwanto. (2015). Argumen Valid. In Pidato Pengukuhan Jabatan Guru Besar dalam Bidang Ilmu Matematika pada Fakultas Matematika dan Ilmu Pengetahuan Alam disampaikan pada Sidang Terbuka Senat Universitas Negeri Malang tanggal 26 Oktober 2015 (pp. 1–27). Universitas Negeri Malang. http://library.um.ac.id/images/2015-Argumen-Valid- Prof-Drs-Purwanto-Ph.D.pdf

Rav, Y. (1999). Why Do We Prove Theorems? Philosophia Mathematica, 7, 5–41. https://doi.org/10.1093/philmat/7.1.5

Siu, M. K. (2008). Proof as a practice of mathematical pursuit in a cultural, socio-political and intellectual context. ZDM - International Journal on Mathematics Education. https://doi.org/10.1007/s11858-008-0087-y

Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education.

Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177. https://doi.org/10.1090/S0273-0979-1994-00502-6

Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2012). Elementary and Middle School Mathematics: Teaching Developmentally (Seventh Ed). Allyn & Bacon is an Imprint of Pearson.

Weber, K. (2003). Research Sampler 8: students’ difficulties with proof. The Mathematical Association of America: Online, 1, 1–8. http://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof

Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39(4), 431–459.

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics. https://doi.org/10.1023/B:EDUC.0000040410.57253.a1

Wikipedia contributors. (2020). Theorem. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Theorem&oldid=944519294

Zaslavsky, O., Nickerson, S. D., Stylianides, A. J., Kidron, I., & Winicki-Landman, G. (2012). Chapter 9 The Need for Proof and Proving: Mathematical and Pedagogical Perspectives. G. Hanna and M. de Villiers (Eds.), Proof and Proving in Mathematics Education, New ICMI Study Series 15, 215–230. https://doi.org/10.1007/s11858-008-0073-4

Downloads

Published

2020-07-31

How to Cite

Hamdani, D., Junaidi, J., Novitasari, D., Salsabila, N. H., & Tyaningsih, R. Y. (2020). Bukti yang Membuktikan dan Bukti yang Menjelaskan dalam Kelas Matematika. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 4(2), 248–258. https://doi.org/10.36312/e-saintika.v4i2.253

Issue

Section

Article Review