Bukti yang Membuktikan dan Bukti yang Menjelaskan dalam Kelas Matematika
DOI:
https://doi.org/10.36312/e-saintika.v4i2.253Keywords:
Bukti yang Membuktikan, Bukti yang Menjelaskan, Proofs that Prove, Proofs that ExplainAbstract
Tujuan penelitian ini adalah mendeskripsikan secara komprehensif perbedaan bukti yang membuktikan dan bukti yang menjelaskan berdasarkan pertimbangan implikasi kedua bukti tersebut sebagai dasar konstruksi penalaran dan bukti dalam matematika. Kajian dijalani dengan kegiatan menguraikan perbedaan spesifik antara keduanya serta memberikan contoh kasus kedua bukti, dan memberikan justifikasi atas pentingnya pengenalan kedua bukti dalam kelas matematika. Kedua bukti digambarkan dengan permasalahan konsep barisan bilangan ganjil. Bukti yang membuktikan hanya menunjukkan dengan menggunakan induksi matematis, sementara bukti yang menjelaskan menunjukkan dengan bukti Gauss, representasi geometrik bangun titik, dan garis zig-zag. Perbedaan antara keduanya tampak pada pemberian alasan yang berasal dari bukti itu sendiri. Hasil kajian mengindikasikan bahwa peran bukti dalam kelas matematika pada tingkat perguruan tinggi adalah membuktikan/meyakinkan, pada tingkat menengah atas adalah membuktikan dan menjelaskan, dan pada tingkat sekolah menengah pertama dan dasar peran utamanya adalah menjelaskan. Akibatnya bukti matematis tidak hanya membuktikan/menyakinkan, melainkan juga menjelaskan. Karenanya penting mempertimbangkan implikasi bukti dalam kurikulum matematika di sekolah, serta perlunya menyajikan bab materi kepada mahasiswa pendidikan matematika tidak hanya bukti yang membuktikan, melainkan juga bukti yang menjelaskan.
Proofs that Prove and Proofs that Explain in Mathematics Classroom
Abstract
The purpose of this study was to comprehensively describe the differences of the proofs that prove and proofs that explain based on the consideration of the implications of the two proofs as the basis for the construction reasoning and proofs in mathematics. The study was undertaken with the activity of describing the specific differences between the two and providing examples of cases of both proofs; and provide justification for the importance of introducing both proofs in mathematics classrooms. Both proofs are illustrated by the problem of the odd number sequence concept. Proofs that prove is only shown using mathematical induction, while proofs that explain shows with Gaussian proof, a geometric representation of point shape, and zigzag line. The difference between the two appears to be the reasoning that comes from the proof itself. The results of the study indicate that the role of proof in mathematics classes at the tertiary level is proving/convincing, at the senior secondary level it is proving and explaining, and at the junior and elementary school level its main role is explaining. As a result, mathematical proof does not only prove/convince, but also explain. It is therefore important to consider the implications of proof in the mathematics curriculum in schools, as well as the need to present chapter materials to mathematics education students not only proofs that prove but also proof that explain.
Downloads
References
Balacheff, N. (1991). The Benefits and Limits of Social Interaction: The Case of Mathematical Proof. (Alan J. Bi, pp. 175–192). Kluwer Academic Publishers,Mathematics education library. hal-01550051. https://doi.org/10.1007/978-94-017-2195-0_9
Balacheff, N. (2017). A study of students’ proving processes at the junior high school level. Proceedings of the Second UCSMP International Conference on Mathematics Education, December, 284–297.
Bartle, R. G., & Sherbert, D. R. (2011). Introduction to Real Analysis (Fourth Edi). John Wiley & Sons, Inc.
de Villiers, M. (1990). The role and function of proof in Mathematics. Pythagoras.
de Villiers, M. (2010). Experimentation and proof in mathematics. In Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. https://doi.org/10.1007/978-1-4419-0576-5_14
Devlin, K. (2003). Sets, Functions, and Logic: An Introduction to Abstract Mathematics. In Sets, Functions, and Logic (Third Edit). CRC Press.
Dumas, B. A., & McCarthy, J. E. (2015). Transition to Higher Mathematics: Structure and Proof (Second Edition). In Creative Commons Attribu- tion, NonCommercial License. https://doi.org/10.7936/K7Z899HJ
Gilbert, L., & Gilbert, J. (2009). Elements of Modern Algebra (Seventh Ed, Issue 1). Brooks/Cole: Cengage Learning. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004
Hanna, G. (1990). Some pedagogical aspects of proof. Interchange. https://doi.org/10.1007/BF01809605
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics. https://doi.org/10.1023/A:1012737223465
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second Handbook of Research on Mathematics Teaching and Learning. https://doi.org/10.4324/9780203882009
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428. https://doi.org/10.2307/749651
Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction, 24(1), 73–122. https://doi.org/10.1207/s1532690xci2401_2
Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49, 283–312. https://doi.org/10.1023/A:1020264906740
Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics. https://doi.org/10.1007/BF01273372
Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning and Instruction, 18, 54–65. https://doi.org/10.1016/j.learninstruc.2006.10.008
Jahnke, H. N. (2010). The conjoint origin of proof and theoretical physics. In Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. https://doi.org/10.1007/978-1-4419-0576-5_2
Koshy, T. (2007). Elementary Number Theory with Applications Second Edition (Second). Elsevier Inc.
Krantz, S. G. (2007). The History and Concept of Mathematical Proof. In The History and Concept of Mathematical Proof.
Kunimune, S., Fujita, T., & Jones, K. (2009). “Why do we have to prove this?†Fostering students’ understanding of ‘proof’ in geometry in lower secondary school. ICMI Study 19: Proof and Proving in Mathematics Education.
Morash, R. P. (1987). Bridge to abstract mathematics: Mathematical Proof and Structures. In Choice Reviews Online (Vol. 50, Issue 06). Random House, Inc. https://doi.org/10.5860/choice.50-3317
NCTM. (2000). Principles and Standards for School Mathematics. In School Science and Mathematics. The Council.
Purwanto. (2015). Argumen Valid. In Pidato Pengukuhan Jabatan Guru Besar dalam Bidang Ilmu Matematika pada Fakultas Matematika dan Ilmu Pengetahuan Alam disampaikan pada Sidang Terbuka Senat Universitas Negeri Malang tanggal 26 Oktober 2015 (pp. 1–27). Universitas Negeri Malang. http://library.um.ac.id/images/2015-Argumen-Valid- Prof-Drs-Purwanto-Ph.D.pdf
Rav, Y. (1999). Why Do We Prove Theorems? Philosophia Mathematica, 7, 5–41. https://doi.org/10.1093/philmat/7.1.5
Siu, M. K. (2008). Proof as a practice of mathematical pursuit in a cultural, socio-political and intellectual context. ZDM - International Journal on Mathematics Education. https://doi.org/10.1007/s11858-008-0087-y
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education.
Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177. https://doi.org/10.1090/S0273-0979-1994-00502-6
Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2012). Elementary and Middle School Mathematics: Teaching Developmentally (Seventh Ed). Allyn & Bacon is an Imprint of Pearson.
Weber, K. (2003). Research Sampler 8: students’ difficulties with proof. The Mathematical Association of America: Online, 1, 1–8. http://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof
Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39(4), 431–459.
Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics. https://doi.org/10.1023/B:EDUC.0000040410.57253.a1
Wikipedia contributors. (2020). Theorem. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Theorem&oldid=944519294
Zaslavsky, O., Nickerson, S. D., Stylianides, A. J., Kidron, I., & Winicki-Landman, G. (2012). Chapter 9 The Need for Proof and Proving: Mathematical and Pedagogical Perspectives. G. Hanna and M. de Villiers (Eds.), Proof and Proving in Mathematics Education, New ICMI Study Series 15, 215–230. https://doi.org/10.1007/s11858-008-0073-4
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

