Immersive Virtual Reality and Computational Approaches for Advancing Chemistry Education: A Narrative Review

Authors

DOI:

https://doi.org/10.36312/e-saintika.v9i1.2567

Keywords:

Virtual Reality (VR), Computational Chemistry, Chemistry Classroom, Molecular Structure

Abstract

This narrative review explores the integration of virtual reality (VR) as a transformative instructional medium in computational chemistry, focusing on how VR can address challenges such as limited 3D visualization and costly experimental setups. VR tools like iMD-VR and Nanome offer immersive interaction with 3D molecular structures, enhancing both conceptual understanding and practical skill development. By fostering engagement, critical thinking, and confidence among learners, VR makes complex chemical phenomena more accessible. However, infrastructure limitations and insufficient empirical data persist, especially in resource-constrained regions. Recent studies emphasize cloud-based solutions and collaborative VR labs to reduce costs and improve scalability. This review highlights VR’s potential to modernize chemistry education, calling for more rigorous research to validate its long-term impact on learning outcomes.

Downloads

Download data is not yet available.

References

Adnan, A. H. M. (2020). From interactive teaching to immersive learning: Higher Education 4.0 via 360-degree videos and virtual reality in Malaysia. IOP Conference Series: Materials Science and Engineering, 917(1), 012023. https://doi.org/10.1088/1757-899X/917/1/012023 DOI: https://doi.org/10.1088/1757-899X/917/1/012023

Agbonifo, O. C., Sarumi, O. A., & Akinola, Y. M. (2020). A chemistry laboratory platform enhanced with virtual reality for students’ adaptive learning. Research in Learning Technology, 28(0). https://doi.org/10.25304/rlt.v28.2419 DOI: https://doi.org/10.25304/rlt.v28.2419

Berkmen, M., Balla, M., Cavanaugh, M., Smith, I., Flores-Artica, M., Thornhill, A., Lockart, J., Johnson, W., & Peterson, C. (2024). Abstract 1484 Use of the Virtual Reality App Nanome for Teaching Three-Dimensional Biomolecular Structures. Journal of Biological Chemistry, 300(3), 105916. https://doi.org/10.1016/j.jbc.2024.105916 DOI: https://doi.org/10.1016/j.jbc.2024.105916

Cipresso, P., Serino, S., & Riva, G. (2016). Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science. BMC Medical Informatics and Decision Making, 16(1), 37. https://doi.org/10.1186/s12911-016-0276-5 DOI: https://doi.org/10.1186/s12911-016-0276-5

Cummins, M. R., Soni, H., Ivanova, J., Ong, T., Barrera, J., Wilczewski, H., Welch, B., & Bunnell, B. E. (2024). Narrative review of telemedicine applications in decentralized research. Journal of Clinical and Translational Science, 8(1), e30. https://doi.org/10.1017/cts.2024.3 DOI: https://doi.org/10.1017/cts.2024.3

Daemi, A., Chugh, R., & Kanagarajoo, M. V. (2021). Social media in project management: A systematic narrative literature review. International Journal of Information Systems and Project Management, 8(4), 5–21. https://doi.org/10.12821/ijispm080401 DOI: https://doi.org/10.12821/ijispm080401

Deeks, H., Walters, R., Barnoud, J., Glowacki, D., & Mulholland, A. (2020). Interactive Molecular Dynamics in Virtual Reality (iMD-VR) Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. https://doi.org/10.26434/chemrxiv.12834335.v1 DOI: https://doi.org/10.26434/chemrxiv.12834335.v1

Di Lernia, D., Cipresso, P., Pedroli, E., & Riva, G. (2018). Toward an Embodied Medicine: A Portable Device with Programmable Interoceptive Stimulation for Heart Rate Variability Enhancement. Sensors, 18(8), 2469. https://doi.org/10.3390/s18082469 DOI: https://doi.org/10.3390/s18082469

Dunnagan, C. L., Dannenberg, D. A., Cuales, M. P., Earnest, A. D., Gurnsey, R. M., & Gallardo-Williams, M. T. (2020). Production and Evaluation of a Realistic Immersive Virtual Reality Organic Chemistry Laboratory Experience: Infrared Spectroscopy. Journal of Chemical Education, 97(1), 258–262. https://doi.org/10.1021/acs.jchemed.9b00705 DOI: https://doi.org/10.1021/acs.jchemed.9b00705

Edwards, B. I., Bielawski, K. S., Prada, R., & Cheok, A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363–373. https://doi.org/10.1007/s10055-018-0345-4 DOI: https://doi.org/10.1007/s10055-018-0345-4

Feiner, S., MacIntyre, B., Höllerer, T., & Webster, A. (1997). A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. Personal Technologies, 1(4), 208–217. https://doi.org/10.1007/BF01682023 DOI: https://doi.org/10.1007/BF01682023

Ferrell, J. B., Campbell, J. P., McCarthy, D. R., McKay, K. T., Hensinger, M., Srinivasan, R., Zhao, X., Wurthmann, A., Li, J., & Schneebeli, S. T. (2019). Chemical Exploration with Virtual Reality in Organic Teaching Laboratories. Journal of Chemical Education, 96(9), 1961–1966. https://doi.org/10.1021/acs.jchemed.9b00036 DOI: https://doi.org/10.1021/acs.jchemed.9b00036

Fombona, J., Pascual, M. A., & Pérez Ferra, M. (2020). Analysis of the Educational Impact of M-Learning and Related Scientific Research. Journal of New Approaches in Educational Research, 9(2), 167–180. https://doi.org/10.7821/naer.2020.7.470 DOI: https://doi.org/10.7821/naer.2020.7.470

Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393–2400. https://doi.org/10.1017/S003329171700040X DOI: https://doi.org/10.1017/S003329171700040X

Gungor, A., Kool, D., Lee, M., Avraamidou, L., Eisink, N., Albada, B., Van Der Kolk, K., Tromp, M., & Bitter, J. H. (2022). The Use of Virtual Reality in A Chemistry Lab and Its Impact on Students’ Self-Efficacy, Interest, Self-Concept and Laboratory Anxiety. Eurasia Journal of Mathematics, Science and Technology Education, 18(3), em2090. https://doi.org/10.29333/ejmste/11814 DOI: https://doi.org/10.29333/ejmste/11814

Guruloo, T. N. M., & Osman, K. (2023). Integrating Virtual Reality Laboratories (VRLs) in Chemistry Education: A Systematic Literature Review. International Journal of Education, 15(4), 127. https://doi.org/10.5296/ije.v15i4.21372 DOI: https://doi.org/10.5296/ije.v15i4.21372

Hall, J., Gaved, M., & Sargent, J. (2021). Participatory Research Approaches in Times of Covid-19: A Narrative Literature Review. International Journal of Qualitative Methods, 20, 16094069211010087. https://doi.org/10.1177/16094069211010087 DOI: https://doi.org/10.1177/16094069211010087

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM?GUI: A web?based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945 DOI: https://doi.org/10.1002/jcc.20945

Kamal, A. (2020). UNICEF Education COVID-19 Case Study Malaysia – Empowering teachers to deliver blended learning after school reopening. https://shorturl.at/BuO73

Li, Z., Cao, Y., & Luo, J. (2023). Application of Virtual Reality Technology in the Chemistry Teaching Process. In Z. Zhan, D. Zhou, & H. Wu (Eds.), Proceedings of the 2022 2nd International Conference on Education, Information Management and Service Science (EIMSS 2022) (pp. 1253–1258). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-024-4_129 DOI: https://doi.org/10.2991/978-94-6463-024-4_129

Luckerson, V. (2014). Facebook Buys Oculus Rift Virtual Reality Manufacturer. Time.Com. https://time.com/37842/facebook-oculus-rift/

Makransky, G., Petersen, G. B., & Klingenberg, S. (2020). Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? British Journal of Educational Technology, 51(6), 2079–2097. https://doi.org/10.1111/bjet.12954 DOI: https://doi.org/10.1111/bjet.12954

Neri, S. G., Cardoso, J. R., Cruz, L., Lima, R. M., De Oliveira, R. J., Iversen, M. D., & Carregaro, R. L. (2017). Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clinical Rehabilitation, 31(10), 1292–1304. https://doi.org/10.1177/0269215517694677 DOI: https://doi.org/10.1177/0269215517694677

Omar, M. H. A. K., Faroerzy, N. N. I., & Nordin, N. (2023). Student’s Perception toward Learning Management System in Studying Organic Chemistry During Pandemic Covid-19. Multidisciplinary Applied Research and Innovation, 4(3), Article 3.

Papadakis, S. (2020). Apps to Promote Computational Thinking Concepts and Coding Skills in Children of Preschool and Pre-Primary School Age: In S. Papadakis & M. Kalogiannakis (Eds.), Advances in Educational Technologies and Instructional Design (pp. 101–121). IGI Global. https://doi.org/10.4018/978-1-7998-1486-3.ch006 DOI: https://doi.org/10.4018/978-1-7998-1486-3.ch006

Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., Shyshkina, M. P., Sokolyuk, O. M., Mintii, I. S., Vakaliuk, T. A., Azarova, L. E., Kolgatina, L. S., Amelina, S. M., Volkova, N. P., Velychko, V. Ye., Striuk, A. M., & Semerikov, S. O. (2023b). Unlocking the power of synergy: The joint force of cloud technologies and augmented reality in education. Kryvyi Rih National University. https://doi.org/10.31812/123456789/7399 DOI: https://doi.org/10.31812/123456789/7399

Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., Shyshkina, M. P., Sokolyuk, O. M., Mintii, I. S., Vakaliuk, T. A., Striuk, A. M., & Semerikov, S. O. (2023a). Revolutionizing education: Using computer simulation and cloud-based smart technology to facilitate successful open learning. Kryvyi Rih National University. https://doi.org/10.31812/123456789/7375 DOI: https://doi.org/10.31812/123456789/7375

Pastel, S., Petri, K., Bürger, D., Marschal, H., Chen, C.-H., & Witte, K. (2022). Influence of body visualization in VR during the execution of motoric tasks in different age groups. PLOS ONE, 17(1), e0263112. https://doi.org/10.1371/journal.pone.0263112 DOI: https://doi.org/10.1371/journal.pone.0263112

Patel, C., Garg, N., Panigrahi, S., & Kumar, V. (2022). Signal processing with MATLAB and Python for real-life structural health monitoring: A comparative implementation for post-processing. https://doi.org/10.21203/rs.3.rs-1856394/v1 DOI: https://doi.org/10.21203/rs.3.rs-1856394/v1

Qin, T., Cook, M., & Courtney, M. (2021). Exploring Chemistry with Wireless, PC-Less Portable Virtual Reality Laboratories. Journal of Chemical Education, 98(2), 521–529. https://doi.org/10.1021/acs.jchemed.0c00954 DOI: https://doi.org/10.1021/acs.jchemed.0c00954

Riva, G. (2018). The neuroscience of body memory: From the self through the space to the others. Cortex, 104, 241–260. https://doi.org/10.1016/j.cortex.2017.07.013 DOI: https://doi.org/10.1016/j.cortex.2017.07.013

Romeo, A., Iacovelli, F., & Falconi, M. (2020). Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: Virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Research, 286, 198068. https://doi.org/10.1016/j.virusres.2020.198068 DOI: https://doi.org/10.1016/j.virusres.2020.198068

Ryoo, K., Bedell, K., & Swearingen, A. (2018). Promoting Linguistically Diverse Students’ Short-Term and Long-Term Understanding of Chemical Phenomena Using Visualizations. Journal of Science Education and Technology, 27(6), 508–522. https://doi.org/10.1007/s10956-018-9739-z DOI: https://doi.org/10.1007/s10956-018-9739-z

Scavarelli, A., Arya, A., & Teather, R. J. (2021). Virtual reality and augmented reality in social learning spaces: A literature review. Virtual Reality, 25(1), 257–277. https://doi.org/10.1007/s10055-020-00444-8 DOI: https://doi.org/10.1007/s10055-020-00444-8

Schmidt, M., Beck, D., Glaser, N., & Schmidt, C. (2017). A Prototype Immersive, Multi-user 3D Virtual Learning Environment for Individuals with Autism to Learn Social and Life Skills: A Virtuoso DBR Update. In D. Beck, C. Allison, L. Morgado, J. Pirker, F. Khosmood, J. Richter, & C. Gütl (Eds.), Immersive Learning Research Network (Vol. 725, pp. 185–188). Springer International Publishing. https://doi.org/10.1007/978-3-319-60633-0_15 DOI: https://doi.org/10.1007/978-3-319-60633-0_15

Viitaharju, P., Nieminen, M., Linnera, J., Yliniemi, K., & Karttunen, A. J. (2023). Student experiences from virtual reality-based chemistry laboratory exercises. Education for Chemical Engineers, 44, 191–199. https://doi.org/10.1016/j.ece.2023.06.004 DOI: https://doi.org/10.1016/j.ece.2023.06.004

Yusof, A., Adnan, A., Mustafa Kamal, N. N., Mohd Kamal, M., & Ahmad, M. (2019). Education 4.0 Immersive Learning with Spherical Videos (360°) and Virtual Reality (VR) Experiences. Leading Towards Creativity & Innovation (Series 2), 329–343.

Downloads

Published

2025-03-16

How to Cite

Hamidon, N. F., Mohd Zaid, H. F., & Jumbri, K. (2025). Immersive Virtual Reality and Computational Approaches for Advancing Chemistry Education: A Narrative Review. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 9(1), 32–45. https://doi.org/10.36312/e-saintika.v9i1.2567

Issue

Section

Article Review