Immersive Virtual Reality and Computational Approaches for Advancing Chemistry Education: A Narrative Review
DOI:
https://doi.org/10.36312/e-saintika.v9i1.2567Keywords:
Virtual Reality (VR), Computational Chemistry, Chemistry Classroom, Molecular StructureAbstract
This narrative review explores the integration of virtual reality (VR) as a transformative instructional medium in computational chemistry, focusing on how VR can address challenges such as limited 3D visualization and costly experimental setups. VR tools like iMD-VR and Nanome offer immersive interaction with 3D molecular structures, enhancing both conceptual understanding and practical skill development. By fostering engagement, critical thinking, and confidence among learners, VR makes complex chemical phenomena more accessible. However, infrastructure limitations and insufficient empirical data persist, especially in resource-constrained regions. Recent studies emphasize cloud-based solutions and collaborative VR labs to reduce costs and improve scalability. This review highlights VR’s potential to modernize chemistry education, calling for more rigorous research to validate its long-term impact on learning outcomes.
Downloads
References
Adnan, A. H. M. (2020). From interactive teaching to immersive learning: Higher Education 4.0 via 360-degree videos and virtual reality in Malaysia. IOP Conference Series: Materials Science and Engineering, 917(1), 012023. https://doi.org/10.1088/1757-899X/917/1/012023
Agbonifo, O. C., Sarumi, O. A., & Akinola, Y. M. (2020). A chemistry laboratory platform enhanced with virtual reality for students’ adaptive learning. Research in Learning Technology, 28(0). https://doi.org/10.25304/rlt.v28.2419
Berkmen, M., Balla, M., Cavanaugh, M., Smith, I., Flores-Artica, M., Thornhill, A., Lockart, J., Johnson, W., & Peterson, C. (2024). Abstract 1484 Use of the Virtual Reality App Nanome for Teaching Three-Dimensional Biomolecular Structures. Journal of Biological Chemistry, 300(3), 105916. https://doi.org/10.1016/j.jbc.2024.105916
Cipresso, P., Serino, S., & Riva, G. (2016). Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science. BMC Medical Informatics and Decision Making, 16(1), 37. https://doi.org/10.1186/s12911-016-0276-5
Cummins, M. R., Soni, H., Ivanova, J., Ong, T., Barrera, J., Wilczewski, H., Welch, B., & Bunnell, B. E. (2024). Narrative review of telemedicine applications in decentralized research. Journal of Clinical and Translational Science, 8(1), e30. https://doi.org/10.1017/cts.2024.3
Daemi, A., Chugh, R., & Kanagarajoo, M. V. (2021). Social media in project management: A systematic narrative literature review. International Journal of Information Systems and Project Management, 8(4), 5–21. https://doi.org/10.12821/ijispm080401
Deeks, H., Walters, R., Barnoud, J., Glowacki, D., & Mulholland, A. (2020). Interactive Molecular Dynamics in Virtual Reality (iMD-VR) Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. https://doi.org/10.26434/chemrxiv.12834335.v1
Di Lernia, D., Cipresso, P., Pedroli, E., & Riva, G. (2018). Toward an Embodied Medicine: A Portable Device with Programmable Interoceptive Stimulation for Heart Rate Variability Enhancement. Sensors, 18(8), 2469. https://doi.org/10.3390/s18082469
Dunnagan, C. L., Dannenberg, D. A., Cuales, M. P., Earnest, A. D., Gurnsey, R. M., & Gallardo-Williams, M. T. (2020). Production and Evaluation of a Realistic Immersive Virtual Reality Organic Chemistry Laboratory Experience: Infrared Spectroscopy. Journal of Chemical Education, 97(1), 258–262. https://doi.org/10.1021/acs.jchemed.9b00705
Edwards, B. I., Bielawski, K. S., Prada, R., & Cheok, A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363–373. https://doi.org/10.1007/s10055-018-0345-4
Feiner, S., MacIntyre, B., Höllerer, T., & Webster, A. (1997). A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. Personal Technologies, 1(4), 208–217. https://doi.org/10.1007/BF01682023
Ferrell, J. B., Campbell, J. P., McCarthy, D. R., McKay, K. T., Hensinger, M., Srinivasan, R., Zhao, X., Wurthmann, A., Li, J., & Schneebeli, S. T. (2019). Chemical Exploration with Virtual Reality in Organic Teaching Laboratories. Journal of Chemical Education, 96(9), 1961–1966. https://doi.org/10.1021/acs.jchemed.9b00036
Fombona, J., Pascual, M. A., & Pérez Ferra, M. (2020). Analysis of the Educational Impact of M-Learning and Related Scientific Research. Journal of New Approaches in Educational Research, 9(2), 167–180. https://doi.org/10.7821/naer.2020.7.470
Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393–2400. https://doi.org/10.1017/S003329171700040X
Gungor, A., Kool, D., Lee, M., Avraamidou, L., Eisink, N., Albada, B., Van Der Kolk, K., Tromp, M., & Bitter, J. H. (2022). The Use of Virtual Reality in A Chemistry Lab and Its Impact on Students’ Self-Efficacy, Interest, Self-Concept and Laboratory Anxiety. Eurasia Journal of Mathematics, Science and Technology Education, 18(3), em2090. https://doi.org/10.29333/ejmste/11814
Guruloo, T. N. M., & Osman, K. (2023). Integrating Virtual Reality Laboratories (VRLs) in Chemistry Education: A Systematic Literature Review. International Journal of Education, 15(4), 127. https://doi.org/10.5296/ije.v15i4.21372
Hall, J., Gaved, M., & Sargent, J. (2021). Participatory Research Approaches in Times of Covid-19: A Narrative Literature Review. International Journal of Qualitative Methods, 20, 16094069211010087. https://doi.org/10.1177/16094069211010087
Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM?GUI: A web?based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
Kamal, A. (2020). UNICEF Education COVID-19 Case Study Malaysia – Empowering teachers to deliver blended learning after school reopening. https://shorturl.at/BuO73
Li, Z., Cao, Y., & Luo, J. (2023). Application of Virtual Reality Technology in the Chemistry Teaching Process. In Z. Zhan, D. Zhou, & H. Wu (Eds.), Proceedings of the 2022 2nd International Conference on Education, Information Management and Service Science (EIMSS 2022) (pp. 1253–1258). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-024-4_129
Luckerson, V. (2014). Facebook Buys Oculus Rift Virtual Reality Manufacturer. Time.Com. https://time.com/37842/facebook-oculus-rift/
Makransky, G., Petersen, G. B., & Klingenberg, S. (2020). Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? British Journal of Educational Technology, 51(6), 2079–2097. https://doi.org/10.1111/bjet.12954
Neri, S. G., Cardoso, J. R., Cruz, L., Lima, R. M., De Oliveira, R. J., Iversen, M. D., & Carregaro, R. L. (2017). Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clinical Rehabilitation, 31(10), 1292–1304. https://doi.org/10.1177/0269215517694677
Omar, M. H. A. K., Faroerzy, N. N. I., & Nordin, N. (2023). Student’s Perception toward Learning Management System in Studying Organic Chemistry During Pandemic Covid-19. Multidisciplinary Applied Research and Innovation, 4(3), Article 3.
Papadakis, S. (2020). Apps to Promote Computational Thinking Concepts and Coding Skills in Children of Preschool and Pre-Primary School Age: In S. Papadakis & M. Kalogiannakis (Eds.), Advances in Educational Technologies and Instructional Design (pp. 101–121). IGI Global. https://doi.org/10.4018/978-1-7998-1486-3.ch006
Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., Shyshkina, M. P., Sokolyuk, O. M., Mintii, I. S., Vakaliuk, T. A., Azarova, L. E., Kolgatina, L. S., Amelina, S. M., Volkova, N. P., Velychko, V. Ye., Striuk, A. M., & Semerikov, S. O. (2023b). Unlocking the power of synergy: The joint force of cloud technologies and augmented reality in education. Kryvyi Rih National University. https://doi.org/10.31812/123456789/7399
Papadakis, S., Kiv, A. E., Kravtsov, H. M., Osadchyi, V. V., Marienko, M. V., Pinchuk, O. P., Shyshkina, M. P., Sokolyuk, O. M., Mintii, I. S., Vakaliuk, T. A., Striuk, A. M., & Semerikov, S. O. (2023a). Revolutionizing education: Using computer simulation and cloud-based smart technology to facilitate successful open learning. Kryvyi Rih National University. https://doi.org/10.31812/123456789/7375
Pastel, S., Petri, K., Bürger, D., Marschal, H., Chen, C.-H., & Witte, K. (2022). Influence of body visualization in VR during the execution of motoric tasks in different age groups. PLOS ONE, 17(1), e0263112. https://doi.org/10.1371/journal.pone.0263112
Patel, C., Garg, N., Panigrahi, S., & Kumar, V. (2022). Signal processing with MATLAB and Python for real-life structural health monitoring: A comparative implementation for post-processing. https://doi.org/10.21203/rs.3.rs-1856394/v1
Qin, T., Cook, M., & Courtney, M. (2021). Exploring Chemistry with Wireless, PC-Less Portable Virtual Reality Laboratories. Journal of Chemical Education, 98(2), 521–529. https://doi.org/10.1021/acs.jchemed.0c00954
Riva, G. (2018). The neuroscience of body memory: From the self through the space to the others. Cortex, 104, 241–260. https://doi.org/10.1016/j.cortex.2017.07.013
Romeo, A., Iacovelli, F., & Falconi, M. (2020). Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: Virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Research, 286, 198068. https://doi.org/10.1016/j.virusres.2020.198068
Ryoo, K., Bedell, K., & Swearingen, A. (2018). Promoting Linguistically Diverse Students’ Short-Term and Long-Term Understanding of Chemical Phenomena Using Visualizations. Journal of Science Education and Technology, 27(6), 508–522. https://doi.org/10.1007/s10956-018-9739-z
Scavarelli, A., Arya, A., & Teather, R. J. (2021). Virtual reality and augmented reality in social learning spaces: A literature review. Virtual Reality, 25(1), 257–277. https://doi.org/10.1007/s10055-020-00444-8
Schmidt, M., Beck, D., Glaser, N., & Schmidt, C. (2017). A Prototype Immersive, Multi-user 3D Virtual Learning Environment for Individuals with Autism to Learn Social and Life Skills: A Virtuoso DBR Update. In D. Beck, C. Allison, L. Morgado, J. Pirker, F. Khosmood, J. Richter, & C. Gütl (Eds.), Immersive Learning Research Network (Vol. 725, pp. 185–188). Springer International Publishing. https://doi.org/10.1007/978-3-319-60633-0_15
Viitaharju, P., Nieminen, M., Linnera, J., Yliniemi, K., & Karttunen, A. J. (2023). Student experiences from virtual reality-based chemistry laboratory exercises. Education for Chemical Engineers, 44, 191–199. https://doi.org/10.1016/j.ece.2023.06.004
Yusof, A., Adnan, A., Mustafa Kamal, N. N., Mohd Kamal, M., & Ahmad, M. (2019). Education 4.0 Immersive Learning with Spherical Videos (360°) and Virtual Reality (VR) Experiences. Leading Towards Creativity & Innovation (Series 2), 329–343.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Noor Fazrieyana Hamidon, Hayyiratul Fatimah Mohd Zaid, Khairulazhar Jumbri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

