Predictive Analysis of Cognitive Style and Gender on Junior High School Students’ Mastery of the Pythagorean Theorem

Authors

  • Khumaeroh Dwi Nur'aini Universitas Musamus
  • Irmawaty Natsir Universitas Musamus

DOI:

https://doi.org/10.36312/mtx4w890

Keywords:

Cognitive Style, Gender, Logistic Regression, Pythagorean Theorem

Abstract

This study investigates the predictive effect of gender and cognitive style on junior high school students’ mastery of the Pythagorean Theorem. A quantitative ex post facto design was applied to 71 eighth-grade students who had previously learned this topic. Mastery was measured using a five-item conceptual test, with a mastery threshold of 72% or higher, based on curriculum competency standards, expert judgment, and assessment guidelines. Gender (0 = female; 1 = male) and cognitive style (0 = FD; 1 = FI) were assessed using the Group Embedded Figures Test (GEFT). Binary logistic regression was employed. Model fit was satisfactory (Hosmer–Lemeshow p = .473), accuracy = 85.9%, and pseudo-R² (Nagelkerke) = 0.671. Cognitive style significantly predicted mastery (OR = 93.62, 95% CI = [10.64, 823.80], p < .001), while gender did not reach significance (OR = 4.12, 95% CI = [0.92, 18.42], p = .064). Findings highlight the need for adaptive learning strategies tailored to students’ cognitive style. Future studies should include additional predictors (e.g., motivation, instructional support) and apply calibration and cross-validation techniques to enhance prediction generalizability.

Downloads

Download data is not yet available.

References

Ahmed, S. M. A. (2023). The impact of cognitive styles on academic success: An analysis of Kurdish EFL learners’ academic achievement. Journal of University of Duhok, 26(2), 1614–1623. https://doi.org/10.26682/hjuod.2023.26.2.94

Alnar, A., Minggi, I., Mahmud, R. S., Syamsuadi, A., & Arriah, F. (2022). Profil pemecahan masalah teorema Pythagoras ditinjau dari perbedaan gaya kognitif siswa. Jurnal Riset Guru Indonesia, 1(2), 63–69. https://doi.org/10.62388/jrgi.v1i2.102

Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A logistic regression investigation of the relationship between the Learning Assistant model and failure rates in introductory STEM courses. International Journal of STEM Education, 5, 56. https://doi.org/10.1186/s40594-018-0152-1

Bariyah, N., Prabawanto, S., & Dahlan, J. A. (2025). Learning obstacles and students’ difficulties in solving the problem of Pythagorean theorem: A systematic literature review. Jurnal Pendidikan MIPA, 25(4), 1939–1960. https://doi.org/10.23960/jpmipa/v25i4.pp1939-1960

Bernard, M., & Rina. (2021). Analisis kesalahan siswa SMP kelas VIII dalam menyelesaikan soal pada materi teorema Pythagoras. Jurnal Cendekia: Jurnal Pendidikan Matematika, 5(3), 2836–2845. https://doi.org/10.31004/cendekia.v5i3.870

Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. https://doi.org/10.1037/a0018053

Emiliano, F. (2024). Comparative analysis of machine learning models for predicting student success in online programming courses: A study based on LMS data and external factors. Mathematics, 12(20), 3272. https://doi.org/10.3390/math12203272

Ernawati, L. G., Ruslau, M. F. V., & Nur’aini, K. D. (2024). Karakteristik dosen ideal berdasarkan persepsi calon guru matematika. Jurnal Magister Pendidikan Matematika (Jumadika), 6(1), 1–6. https://doi.org/10.30598/jumadikavol6iss1year2024page1-6

Faruk, F. M., Doven, F. S., & Budyanra, B. (2020). Penerapan metode regresi logistik biner untuk mengetahui determinan kesiapsiagaan rumah tangga dalam menghadapi bencana alam. Seminar Nasional Official Statistics, 2019(1), 379–389. https://doi.org/10.34123/semnasoffstat.v2019i1.146

Fauzi, I., Chano, J., & Wu, C.-C. (2025). Mathematical literacy of Indonesian elementary school students: A case study of Bandung school. Journal of Curriculum and Teaching, 14(2), 58–72. https://doi.org/10.5430/jct.v14n2p58

Harris, D. (2023). Spatial reasoning in context: Bridging cognitive and educational perspectives of spatial-mathematics relations. Frontiers in Education, 8, 1302099. https://doi.org/10.3389/feduc.2023.1302099

Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373–398. https://doi.org/10.1146/annurev-psych-010213-115057

Jablonski, S. (2023). Real objects as a reason for mathematical reasoning: A comparison of different task settings. International Electronic Journal of Mathematics Education, 18(4), em0758. https://doi.org/10.29333/iejme/13859

Jang, Y., Choi, S., Jung, H., & Kim, H. (2022). Practical early prediction of students’ performance using machine learning and eXplainable AI. Education and Information Technologies, 27, 12855–12889. https://doi.org/10.1007/s10639-022-11120-6

Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: A self-learning text (3rd ed.). Springer.

Kusumaningsih, W., Saputra, H. A., & Aini, A. N. (2019). Cognitive style and gender differences in a conceptual understanding of mathematics students. Journal of Physics: Conference Series, 1280(4), 042017. https://doi.org/10.1088/1742-6596/1280/4/042017

Kyeremeh, P., Awuah, F. K., & Orey, D. C. (2025). Modeling the antecedents of integration of ethnomathematical perspectives into geometry teaching among faculty: A logistic regression analysis. Journal of Research and Advances in Mathematics Education, 10(1), 15–27. https://doi.org/10.23917/jramathedu.v10i1.6374

Lowrie, T., & Logan, T. (2023). Spatial visualization supports students’ math: Mechanisms for spatial transfer. Journal of Intelligence, 11(6), 127. https://doi.org/10.3390/jintelligence11060127

Minarni, A., & Napitupulu, E. E. (2017). Developing instruction materials based on joyful PBL to improve students’ mathematical representation ability. International Education Studies, 10(9), 23. https://doi.org/10.5539/ies.v10n9p23

Nurafni, N., Miatun, A., & Khusna, H. (2018). Profil pemahaman konsep teorema Pythagoras siswa berdasarkan perbedaan gaya kognitif field independent dan field dependent. KALAMATIKA Jurnal Pendidikan Matematika, 3(2), 175–192. https://doi.org/10.22236/kalamatika.vol3no2.2018pp175-192

Nurhayati, Suryani, D. R., & Nur’aini, K. D. (2021). The effect of blended learning on students’ mathematical proving ability. In Proceedings of the International Joined Conference on Social Science (ICSS 2021) (Vol. 603, pp. 438–440). Atlantis Press. https://doi.org/10.2991/assehr.k.211130.079

Oryza, S. B., & Listiadi, A. (2021). Pengaruh motivasi belajar dan status sosial ekonomi orangtua terhadap minat melanjutkan ke perguruan tinggi dengan prestasi belajar sebagai variabel mediasi. JPEKA: Jurnal Pendidikan Ekonomi, Manajemen Dan Keuangan, 5(1), 23–36. https://doi.org/10.26740/jpeka.v5n1.p23-36

Palobo, M., & Nur’aini, K. D. (2018). Pengembangan perangkat pembelajaran berbasis problem based learning berorientasi pada pengingkatan kemampuan penalaran dan sikap siswa terhadap matematika. Magistra, 5, 15–29.

Patingki, A., Mohidin, A. D., & Resmawan, R. (2022). Hubungan gaya kognitif siswa dengan kemampuan pemecahan masalah matematika. Jambura Journal of Mathematics Education, 3(2), 70–80. https://doi.org/10.34312/jmathedu.v3i2.15412

Puhr, R., Heinze, G., Nold, M., Lusa, L., & Geroldinger, A. (2017). Firth’s logistic regression with rare events: Accurate effect estimates and predictions? Statistics in Medicine, 36(14), 2302–2317. https://doi.org/10.1002/sim.7273

Rahmi, L., Yulianti, K., & Prabawanto, S. (2022). Students’ learning obstacles on the topic of Pythagorean theorem. AIP Conference Proceedings, 2478(1). https://doi.org/10.1063/5.0102556

Santoso, T., Ruslau, M. F. V., & Suryani, D. R. (2018). Penerapan analisis konjoin dalam menentukan persepsi siswa SMA Negeri 1 Merauke tentang karakteristik guru matematika. Musamus Journal of Mathematics Education, 1(1), 17–29. https://doi.org/10.35724/mjme.v1i1.781

Sari, A. S. (2017). Kemampuan koneksi matematika siswa pada materi teorema Pythagoras ditinjau dari gaya kognitif [Undergraduate thesis, Universitas Muhammadiyah Surakarta].

Sari, W. P., Purwasi, L. A., & Yanto, Y. (2020). Analisis kesalahan siswa dalam menyelesaikan soal cerita materi teorema Pythagoras. Transformasi: Jurnal Pendidikan Matematika Dan Matematika, 4(2), 387–401. https://doi.org/10.36526/tr.v4i2.1009

Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. Journal of Education, 196(2), 1–38. https://doi.org/10.1177/002205741619600202

Schoenherr, J., Strohmaier, A. R., & Schukajlow, S. (2024). Learning with visualizations helps: A meta-analysis of visualization interventions in mathematics education. Educational Research Review, 45, 100639. https://doi.org/10.1016/j.edurev.2024.100639

Suryani, D. R., Nur’aini, K. D., & Natsir, I. (2023). Perbedaan level kemampuan metakognisi siswa dalam memecahkan masalah matematika ditinjau dari kemampuan matematika siswa. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(3), 3494–3502. https://doi.org/10.24127/ajpm.v12i3.7557

Tinajero, C., & Páramo, M. F. (1997). Field dependence-independence and academic achievement: A re-examination of their relationship. British Journal of Educational Psychology, 67(2), 199–212. https://doi.org/10.1111/j.2044-8279.1997.tb01237.x

Tsigeman, E. S., Likhanov, M. V., Budakova, A. V., Akmalov, A., Sabitov, I., Alenina, E., Bartseva, K., & Kovas, Y. (2023). Persistent gender differences in spatial ability, even in STEM experts. Heliyon, 9(4), e15247. https://doi.org/10.1016/j.heliyon.2023.e15247

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127

Wang, X. (2014). Firth logistic regression for rare variant association tests. Frontiers in Genetics, 5, 187. https://doi.org/10.3389/fgene.2014.00187

Wardhana, I. R., & Fuady, A. (2024). Analisis kemampuan koneksi matematis peserta didik dalam menyelesaikan soal Pythagoras ditinjau dari gaya kognitif. JPMI (Jurnal Pembelajaran Matematika Inovatif), 7(5), 863–874. https://doi.org/10.22460/jpmi.v7i5.21943

Witkin, H. A., Moore, C. A., Goodenough, D., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research, 47(1), 1–64. https://doi.org/10.3102/00346543047001001

Xu, T., & Sun, S. (2025). Spatial reasoning and its contribution to mathematical performance across different content domains: Evidence from Chinese students. Journal of Intelligence, 13(4), 41. https://doi.org/10.3390/jintelligence13040041

Downloads

Published

2025-11-30

Issue

Section

Original Research Article

How to Cite

Nur’aini, K. D., & Natsir, I. (2025). Predictive Analysis of Cognitive Style and Gender on Junior High School Students’ Mastery of the Pythagorean Theorem. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 9(3), 841-857. https://doi.org/10.36312/mtx4w890