Synthesis and Characterization of ZnO Thin Layers using Sol-Gel Spin Coating Method
DOI:
https://doi.org/10.36312/esaintika.v5i2.506Keywords:
synthesis, characterization, ZnO thin layer, sol-gel spin coatingAbstract
The potential of thin layer in many applications has led to research on the development of many new materials and their fabrication methods. This study aimed to synthesize a thin layer of ZnO using the facile and low-cost sol-gel spin coating method. The ZnO thin layer is deposited on a glass substrate and analyzed to observe the influence of the deposition variables such as heating and rotation speed, and its aging. The characterization methods include the identification of the formed phase using X-Ray Diffractometer (XRD), and the microstructure and elemental composition using Scanning Electron Microscopy (SEM) coupled with EDS (Energy Dispersive Spectrometer). The study shows that a thin layer of ZnO is successfully deposited on a glass substrate by heat treatment at temperatures of 300 oC and 500 oC. Furthermore, XRD reveals that higher heating temperatures result in higher diffraction peak intensity. At a heating temperature of 300 °C crystals are formed but are not yet perfectly oriented, while they are at 500 °C. On the other hand, higher spin coating rotation speed gives rise to lower intensity of diffraction peak. The ZnO crystallization is easier to form in the coating process with a lower rotation (1500 rpm). Interestingly, the thin layer is stable over time where there is no significant change in each sample, both in terms of intensity and width of the ZnO crystal peak. The results indicate that gel precursor aged less than two days can form ZnO crystals. Finally, SEM results show that the surface morphology of the ZnO layer heated at 500 oC has an average grain size of 300 nm. Based on the cross-sectional results of SEM shows that the higher the coating rotation speed has resulted the thinner of the ZnO layer, where the thickness of the resulting layer is on order >5 mm.
Downloads
References
Abd-Ellah, M., Moghimi, N., Zhang, L., Thomas, Joseph. P., McGillivray, D., Srivastava, S., & Leung, K. T. (2016). Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale, 8(3), 1658–1664. https://doi.org/10.1039/C5NR08029K
Cheng, Z., Zhang, J., & Kronmüller, H. (2003). Magnetically soft phase in magnetization reversal processes of nanocomposite Sm 2 Fe 15 Ga 2 C x / ? ? Fe permanent magnetic materials. Physical Review B, 68(14), 144417. https://doi.org/10.1103/PhysRevB.68.144417
Çopuro?lu, M., Koh, L. H. K., O’Brien, S., & Crean, G. M. (2009). Comparative characterisation of zinc oxide thin films prepared from zinc acetate with or without water of hydration via the sol–gel method. Journal of Sol-Gel Science and Technology, 52(3), 432–438. https://doi.org/10.1007/s10971-009-2016-0
Daiko, Y., Sakamoto, H., Katagiri, K., Muto, H., Sakai, M., & Matsuda, A. (2008). Deposition of Ultrathin Nafion Layers on Sol–Gel-Derived Phenylsilsesquioxane Particles via Layer-by-Layer Assembly. Journal of The Electrochemical Society, 155(5), B479. https://doi.org/10.1149/1.2885101
Djuriši?, A. B., Ng, A. M. C., & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34(4), 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001
Fathollahi, V., & Amini, M. M. (2001). Sol–gel preparation of highly oriented gallium-doped zinc oxide thin films. Materials Letters, 50(4), 235–239. https://doi.org/10.1016/S0167-577X(01)00231-2
Greene, J. E. (2017). Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35(5), 05C204. https://doi.org/10.1116/1.4998940
Habibi, M. H., & Khaledi Sardashti, M. (2008). Structure and morphology of nanostructured zinc oxide thin films Prepared by dip-vs. Spin-coating methods. Journal of the Iranian Chemical Society, 5(4), 603–609. https://doi.org/10.1007/BF03246140
Ilican, S., Caglar, Y., & Caglar, M. (2008). Preparation and Characterization Of ZnO Thin Films Deposited By Sol-Gel Spin Coating Method. Journal of Optoelectronics and Advanced Materials, 10(10), 2578–2583.
Jittiarporn, P., Badilescu, S., Al Sawafta, M. N., Sikong, L., & Truong, V.-V. (2017). Electrochromic properties of sol–gel prepared hybrid transition metal oxides – A short review. Journal of Science: Advanced Materials and Devices, 2(3), 286–300. https://doi.org/10.1016/j.jsamd.2017.08.005
Kawamura, G., Sato, S., Muto, H., Sakai, M., Lim, P. B., Watanabe, K., Inoue, M., & Matsuda, A. (2010). AgBr nanocrystal-dispersed silsesquioxane–titania hybrid films for holographic materials. Materials Letters, 64(23), 2648–2651. https://doi.org/10.1016/j.matlet.2010.08.068
Khan, M. I., Bhatti, K. A., Qindeel, R., Alonizan, N., & Althobaiti, H. S. (2017). Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results in Physics, 7, 651–655. https://doi.org/10.1016/j.rinp.2016.12.029
Kim, S. W., Nam, K. W., Seo, D. H., Hong, J., Kim, K., Gwon, H., & Kang, K. (2012). Energy storage in composites of a redox couple host and a lithium ion host. Nano Today, 7(3), 168–173. https://doi.org/10.1016/j.nantod.2012.04.004
Kozuka, H., & Hirano, M. (2000). Radiative Striations and Surface Roughness of Alkoxide-Derived Spin Coating Films. Journal of Sol-Gel Science and Technology, 19(1/3), 501–504. https://doi.org/10.1023/A:1008772102546
Maldonado, A., Tirado-Guerra, S., Cázares, J. M., & Olvera, M. de la L. (2010). Physical and sensing properties of ZnO:F:Al thin films deposited by sol–gel. Thin Solid Films, 518(7), 1815–1820. https://doi.org/10.1016/j.tsf.2009.09.039
Mandal, S., Goswami, M. L. N., Das, K., Dhar, A., & Ray, S. K. (2008). Temperature dependent photoluminescence characteristics of nanocrystalline ZnO films grown by sol–gel technique. Thin Solid Films, 516(23), 8702–8706. https://doi.org/10.1016/j.tsf.2008.05.016
Matsuda, A., & Kawamura, G. (2016). Sol–Gel Nano-/Micropatterning Process. In L. Klein, M. Aparicio, & A. Jitianu (Eds.), Handbook of Sol-Gel Science and Technology (pp. 1–28). Springer International Publishing. https://doi.org/10.1007/978-3-319-19454-7_81-1
Mironyuk, I., Mykytyn, I., Vasylyeva, H., & Savka, K. (2020). Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations. Journal of Molecular Liquids, 316, 113840. https://doi.org/10.1016/j.molliq.2020.113840
Mosa, J., & Aparicio, M. (2020). Sol-Gel Synthesis of Nanocrystalline Mesoporous Li4Ti5O12 Thin-Films as Anodes for Li-Ion Microbatteries. Nanomaterials, 10(7), 1369. https://doi.org/10.3390/nano10071369
Muchuweni, E., Sathiaraj, T. S., & Nyakotyo, H. (2017). Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon, 3(4), e00285. https://doi.org/10.1016/j.heliyon.2017.e00285
Nbelayim, P., Ashida, Y., Maegawa, K., Kawamura, G., Muto, H., & Matsuda, A. (2020). Preparation and Characterization of Stable and Active Pt@TiO 2 Core–Shell Nanoparticles as Electrocatalyst for Application in PEMFCs. ACS Applied Energy Materials, 3(4), 3269–3281. https://doi.org/10.1021/acsaem.9b02169
Nbelayim, P., Kawamura, G., Abdel-Galeil, M. M., Tan, W. K., Wei, X., Muto, H., & Matsuda, A. (2018). Effects of multi-sized and -shaped Ag@TiO2 nanoparticles on the performance of plasmonic dye-sensitized solar cells. Journal of the Ceramic Society of Japan, 126(3), 139–151. https://doi.org/10.2109/jcersj2.17203
Nbelayim, P., Kawamura, G., Kian Tan, W., Muto, H., & Matsuda, A. (2017). Systematic characterization of the effect of Ag@TiO2 nanoparticles on the performance of plasmonic dye-sensitized solar cells. Scientific Reports, 7(1), 15690. https://doi.org/10.1038/s41598-017-15541-z
Nisticò, R., Scalarone, D., & Magnacca, G. (2017). Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous and Mesoporous Materials, 248, 18–29. https://doi.org/10.1016/j.micromeso.2017.04.017
Prasada Rao, T., Santhosh Kumar, M. C., Safarulla, A., Ganesan, V., Barman, S. R., & Sanjeeviraja, C. (2010). Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Physica B: Condensed Matter, 405(9), 2226–2231. https://doi.org/10.1016/j.physb.2010.02.016
Qin, H., Guo, W., Huang, X., Gao, P., & Xiao, H. (2020). Preparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatment. Journal of the European Ceramic Society, 40(1), 145–154. https://doi.org/10.1016/j.jeurceramsoc.2019.09.023
Raoufi, D., & Raoufi, T. (2009). The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Applied Surface Science, 255(11), 5812–5817. https://doi.org/10.1016/j.apsusc.2009.01.010
Rwenyagila, E. R., Agyei-Tuffour, B., Zebaze Kana, M. G., Akin-Ojo, O., & Soboyejo, W. O. (2014). Optical properties of ZnO/Al/ZnO multilayer films for large area transparent electrodes. Journal of Materials Research, 29(24), 2912–2920. https://doi.org/10.1557/jmr.2014.298
Sakka, S. (2018). Sol-Gel Formation of Bulk Glasses. In L. Klein, M. Aparicio, & A. Jitianu (Eds.), Handbook of Sol-Gel Science and Technology (pp. 233–256). Springer International Publishing. https://doi.org/10.1007/978-3-319-32101-1_6
Shi, S., Xu, C., Wang, X., Xie, Y., Wang, Y., Dong, Q., Zhu, L., Zhang, G., & Xu, D. (2020). Electrospinning fabrication of flexible Fe3O4 fibers by sol-gel method with high saturation magnetization for heavy metal adsorption. Materials & Design, 186, 108298. https://doi.org/10.1016/j.matdes.2019.108298
Sivaramakrishnan, K., & Alford, T. L. (2010). Conduction and transmission analysis in gold nanolayers embedded in zinc oxide for flexible electronics. Applied Physics Letters, 96(20), 201109. https://doi.org/10.1063/1.3435467
Soo, M. T., Kawamura, G., Muto, H., Matsuda, A., Lockman, Z., & Cheong, K. Y. (2013a). Design of hierarchically meso–macroporous tetragonal ZrO2 thin films with tunable thickness by spin-coating via sol–gel template route. Microporous and Mesoporous Materials, 167, 198–206. https://doi.org/10.1016/j.micromeso.2012.09.010
Soo, M. T., Kawamura, G., Muto, H., Matsuda, A., Lockman, Z., & Cheong, K. Y. (2013b). Fabrication of well-crystallized mesoporous ZrO2 thin films via Pluronic P123 templated sol–gel route. Ceramics International, 39, S437–S440. https://doi.org/10.1016/j.ceramint.2012.10.109
Suwanboon, S., Tanattha, R., & Tanakorn, R. (2008). Fabrication and properties of nanocrystalline zinc oxide thin film prepared by sol-gel method. Songklanakarin Journal of Science and Technology, 30(1), 65–69.
Tadanaga, K., Fujii, T., Matsuda, A., Minami, T., & Tatsumisago, M. (2004). Micropatterning of Sol-Gel Derived Thin Films Using Hydrophobic-Hydrophilic Patterned Surface. Journal of Sol-Gel Science and Technology, 31(1–3), 299–302. https://doi.org/10.1023/B:JSST.0000048007.43110.fa
Takahashi, M. (2018). Responsive and Adaptive Micro Wrinkles on Organic-Inorganic Hybrid Materials. The Chemical Record, 18(7–8), 1222–1231. https://doi.org/10.1002/tcr.201800007
Takahashi, M., Suzuki, K., Tokudome, Y., Malfatti, L., & Innocenzi, P. (2014). Responsive microstructures on organic–inorganic hybrid films. Journal of Sol-Gel Science and Technology, 70(2), 272–277. https://doi.org/10.1007/s10971-014-3301-0
Tan, W. K., Ito, T., Kawamura, G., Muto, H., Lockman, Z., & Matsuda, A. (2017). Controlled facile fabrication of plasmonic enhanced Au-decorated ZnO nanowire arrays dye-sensitized solar cells. Materials Today Communications, 13, 354–358. https://doi.org/10.1016/j.mtcomm.2017.11.004
Tan, W. K., Muto, H., Ito, T., Kawamura, G., Lockman, Z., & Matsuda, A. (2020). Facile Fabrication of Plasmonic Enhanced Noble-Metal-Decorated ZnO Nanowire Arrays for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 20(1), 359–366. https://doi.org/10.1166/jnn.2020.17223
Tan, W. K., Muto, H., Kawamura, G., Lockman, Z., & Matsuda, A. (2021). Nanomaterial Fabrication through the Modification of Sol–Gel Derived Coatings. Nanomaterials, 11(1), 181. https://doi.org/10.3390/nano11010181
Tawa, S., Sato, Y., Orikasa, Y., Matsumoto, K., & Hagiwara, R. (2019). Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol–gel method: Its electrochemical behavior and charge–discharge mechanism as a cathode material for lithium secondary batteries. Journal of Power Sources, 412, 180–188. https://doi.org/10.1016/j.jpowsour.2018.11.046
Toe, M. Z., Pung, S. Y., Yaacob, K. A., Matsuda, A., Tan, W. K., & Han, S. S. (2020). Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 95(2), 439–446. https://doi.org/10.1007/s10971-020-05325-9
Torres Delgado, G., Zúñiga Romero, C. I., Mayén Hernández, S. A., Castanedo Pérez, R., & Zelaya Angel, O. (2009). Optical and structural properties of the sol–gel-prepared ZnO thin films and their effect on the photocatalytic activity. Solar Energy Materials and Solar Cells, 93(1), 55–59. https://doi.org/10.1016/j.solmat.2008.03.020
Valverde-Aguilar, G., & Manríquez Zepeda, J. L. (2015). Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol–gel method. Applied Physics A, 118(4), 1305–1313. https://doi.org/10.1007/s00339-014-8836-y
Xu, L., Shi, L., & Li, X. (2009). Preparation of nanocone ZnO thin film and its aging effect of photoluminescence. Applied Surface Science, 255(11), 5957–5960. https://doi.org/10.1016/j.apsusc.2009.01.044
Zou, G., Chen, W., Liu, R., & Xu, Z. (2007). Orientation enhancement of polycrystalline ZnO thin films through thermal oxidation of electrodeposited zinc metal. Materials Letters, 61(21), 4305–4308. https://doi.org/10.1016/j.matlet.2007.01.092
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Sukainil Ahzan, Darminto Darminto, Ferry Anggoro Ardy Nugroho, Saiful Prayogi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

