Forward Osmosis for Produced Water Treatment: A Comprehensive Review
DOI:
https://doi.org/10.36312/esaintika.v5i3.542Keywords:
forward osmosis, produced water, fouling controlAbstract
During crude oil and natural gas extraction from a reservoir, a large amount of water is also produced. The water fraction contains oil, grease, organic and inorganic constituents, called produced water (PW). Over the years, efficient treatment of PW has been concerned. PW has been treated with various technologies, namely floatation, filtration, coagulation/flocculation, or biological processes. Those technologies were assembled to achieve discharge standards while minimizing the cost. Exploration of membrane-based technologies for the treatment of PW has recently been reported, including the emerging forward osmosis (FO) process. This paper reviews the research progress on the FO process for PW treatment. A brief introduction to the traditional treatment technologies is first provided. Next, the basics of the FO process and research progress on the application of FO on PW treatment are discussed. Finally, techniques for fouling control in FO are reviewed, namely osmotic backwashing, ultrasound, chemical cleaning, and air sparging.
Downloads
References
Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., Putra, Z. A., & Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613
Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009a). The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1), 10–21. https://doi.org/10.1016/j.desal.2008.02.022
Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009b). The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1), 10–21. https://doi.org/10.1016/j.desal.2008.02.022
Adewumi, M. A., Erb, J. E., & Watson, R. W. (1992). Initial Design Considerations for a Cost Effective Treatment of Stripper Oil Well Produced Water. In Produced Water (pp. 511–522). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2902-6_40
Ahmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318–346. https://doi.org/10.1080/15422119.2011.617804
Al-Furaiji, M. (2016). Hyper-saline produced water treatment for beneficial use. https://doi.org/10.3990/1.9789036541565
Alzahrani, S., Mohammad, A. W., Hilal, N., Abdullah, P., & Jaafar, O. (2013). Identification of foulants, fouling mechanisms and cleaning efficiency for NF and RO treatment of produced water. Separation and Purification Technology, 118(Supplement C), 324–341. https://doi.org/10.1016/j.seppur.2013.07.016
Arthur, J., Langhus, B., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies (p. 53). ALL Consulting, LLC.
Bell, E. A., Poynor, T. E., Newhart, K. B., Regnery, J., Coday, B. D., & Cath, T. Y. (2017a). Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science, 525(Supplement C), 77–88. https://doi.org/10.1016/j.memsci.2016.10.032
Bell, E. A., Poynor, T. E., Newhart, K. B., Regnery, J., Coday, B. D., & Cath, T. Y. (2017b). Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science, 525(Supplement C), 77–88. https://doi.org/10.1016/j.memsci.2016.10.032
Bilad, M. R. (2017). Module-scale simulation of forward osmosis module-part B: Modified Spiral-Wound. Indonesian Journal of Science and Technology, 2(2), 211. https://doi.org/10.17509/ijost.v2i2.7998
Bilad, M. R., Mezohegyi, G., Declerck, P., & Vankelecom, I. F. J. (2012). Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors. Water Research, 46(1), 63–72. https://doi.org/10.1016/j.watres.2011.10.026
Bilad, M. R., Qing, L., & Fane, A. G. (2018). Non-linear least-square fitting method for characterization of forward osmosis membrane. Journal of Water Process Engineering, 25, 70–80. https://doi.org/10.1016/j.jwpe.2018.06.011
Boysen, J., Harju, J., Shaw, B., Fosdick, M., Grisanti, A., & Sorensen, J. (1999). The current status of commercial deployment of the freeze thaw evaporation treatment of produced water. SPE/EPA Exploration and Production Environmental Conference, Richardson, TX. https://doi.org/10.2118/52700-MS
Çakmakce, M., Kayaalp, N., & Koyuncu, I. (2008). Desalination of produced water from oil production fields by membrane processes. Desalination, 222(1), 176–186. https://doi.org/10.1016/j.desal.2007.01.147
Casaday, A. L. (1993, January 1). Advances in Flotation Unit Design for Produced Water Treatment. SPE Production Operations Symposium. https://doi.org/10.2118/25472-MS
Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1), 70–87. https://doi.org/10.1016/j.memsci.2006.05.048
Chan, C. C. V., Bérubé, P. R., & Hall, E. R. (2007). Shear profiles inside gas sparged submerged hollow fiber membrane modules. Journal of Membrane Science, 297(1), 104–120. https://doi.org/10.1016/j.memsci.2007.03.032
Chowdhury, M. R., Ren, J., Reimund, K., & McCutcheon, J. R. (2017). A hybrid dead-end/cross-flow forward osmosis system for evaluating osmotic flux performance at high recovery of produced water. Desalination, 421(Supplement C), 127–134. https://doi.org/10.1016/j.desal.2016.08.021
Chun, Y., Mulcahy, D., Zou, L., & Kim, I. S. (2017). A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes, 7(2). https://doi.org/10.3390/membranes7020030
Chun, Y., Qing, L., Sun, G., Bilad, M. R., Fane, A. G., & Chong, T. H. (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445, 75–84. https://doi.org/10.1016/j.desal.2018.07.030
Clifford, D. A. (1999). Chapter 9: Ion Exchange and Inorganic Adsorption. In Water Quality and Treatment: A Handbook of Community Water Supplies (5th ed.). McGraw-Hill.
Coday, B. D., Hoppe-Jones, C., Wandera, D., Shethji, J., Herron, J., Lampi, K., Snyder, S. A., & Cath, T. Y. (2016). Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. Journal of Membrane Science, 499, 491–502. https://doi.org/10.1016/j.memsci.2015.09.031
Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., & Cath, T. Y. (2014a). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333, 23–35.
Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., & Cath, T. Y. (2014b). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333(1), 23–35. https://doi.org/10.1016/j.desal.2013.11.014
Colorado School of Mines. (2009). Technical assessment of produced water treatment technologies. An Integrated Framework for Treatment and Management of Produced Water. RPSEA Project 07122-12, Colorado, 8–128.
Cornelissen, E. R., Harmsen, D., de Korte, K. F., Ruiken, C. J., Qin, J.-J., Oo, H., & Wessels, L. P. (2008). Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 319(1), 158–168. https://doi.org/10.1016/j.memsci.2008.03.048
Cui, Z. F., Chang, S., & Fane, A. G. (2003). The use of gas bubbling to enhance membrane processes. Journal of Membrane Science, 221(1), 1–35. https://doi.org/10.1016/S0376-7388(03)00246-1
Ducom, G., Matamoros, H., & Cabassud, C. (2002). Air sparging for flux enhancement in nanofiltration membranes: Application to O/W stabilized and non-stabilized emulsions. Journal of Membrane Science, 204(1), 221–236. https://doi.org/10.1016/S0376-7388(02)00044-3
Duong, P. H. H., & Chung, T.-S. (2014). Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil–water. Journal of Membrane Science, 452(Supplement C), 117–126. https://doi.org/10.1016/j.memsci.2013.10.030
Ebrahimi, M., Ashaghi, K. S., Engel, L., Willershausen, D., Mund, P., Bolduan, P., & Czermak, P. (2009). Characterization and application of different ceramic membranes for the oilfield produced water treatment. Desalination, 245(1), 533–540. https://doi.org/10.1016/j.desal.2009.02.017
Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009a). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044
Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009b). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044
Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009c). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044
Flemming, H.-C., Schaule, G., Griebe, T., Schmitt, J., & Tamachkiarowa, A. (1997). Biofouling—The Achilles heel of membrane processes. Desalination, 113(2), 215–225. https://doi.org/10.1016/S0011-9164(97)00132-X
Hancock, N. T., & Cath, T. Y. (2009). Solute Coupled Diffusion in Osmotically Driven Membrane Processes. Environmental Science & Technology, 43(17), 6769–6775. https://doi.org/10.1021/es901132x
He, Y., & Jiang, Z.-W. (2008). Technology review: Treating oilfield wastewater. Filtration & Separation, 45(5), 14–16. https://doi.org/10.1016/S0015-1882(08)70174-5
Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleton, E. W., Beaudry, E. G., Xu, P., & Cath, T. Y. (2013a). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312(Supplement C), 60–66. https://doi.org/10.1016/j.desal.2012.05.037
Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleton, E. W., Beaudry, E. G., Xu, P., & Cath, T. Y. (2013b). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312(Supplement C), 60–66. https://doi.org/10.1016/j.desal.2012.05.037
Hizam, S. M., Bilad, M. R., Nordin, N. A. H., Sambudi, N. S., Wirzal, M. D. H., Yusof, N., Klaysom, C., & Jaafar, J. (2021). Inclined forward osmosis module system for fouling control in sustainable produced water treatment using seawater as draw solution. Journal of Water Process Engineering, 40, 101752. https://doi.org/10.1016/j.jwpe.2020.101752
Hoover, L. A., Phillip, W. A., Tiraferri, A., Yip, N. Y., & Elimelech, M. (2011). Forward with Osmosis: Emerging Applications for Greater Sustainability. Environmental Science & Technology, 45(23), 9824–9830. https://doi.org/10.1021/es202576h
Hutchings, N. R., Appleton, E. W., & McGinnis, R. A. (2010, January 1). Making High Quality Frac Water out of Oilfield Waste. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/135469-MS
Igunnu, E. T., & Chen, G. Z. (2014a). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049
Igunnu, E. T., & Chen, G. Z. (2014b). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049
Jankhah, S., & Bérubé, P. R. (2014). Pulse bubble sparging for fouling control. Separation and Purification Technology, 134(Supplement C), 58–65. https://doi.org/10.1016/j.seppur.2014.07.023
Johnson, B. M., Kanagy, L. E., Rodgers, J. H., & Castle, J. W. (2008). Chemical, Physical, and Risk Characterization of Natural Gas Storage Produced Waters. Water, Air, and Soil Pollution, 191(1), 33–54. https://doi.org/10.1007/s11270-007-9605-8
Kim, C., Lee, S., & Hong, S. (2012). Application of osmotic backwashing in forward osmosis: Mechanisms and factors involved. Desalination and Water Treatment, 43(1–3), 314–322. https://doi.org/10.1080/19443994.2012.672215
Kim, E.-S., Liu, Y., & Gamal El-Din, M. (2011). The effects of pre-treatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water. Separation and Purification Technology, 81(3), 418–428. https://doi.org/10.1016/j.seppur.2011.08.016
Klaysom, C., Cath, T. Y., Depuydt, T., & Vankelecom, I. F. J. (2013). Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 42(16), 6959–6989. https://doi.org/10.1039/c3cs60051c
Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185–190. https://doi.org/10.1016/S0041-624X(02)00462-6
Lamminen, M. O., Walker, H. W., & Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1), 213–223. https://doi.org/10.1016/j.memsci.2004.02.031
Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Desalination, 287, 190–199. https://doi.org/10.1016/j.desal.2011.04.004
Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010a). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1), 34–39. https://doi.org/10.1016/j.memsci.2010.08.036
Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010b). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1), 34–39. https://doi.org/10.1016/j.memsci.2010.08.036
Lee, S., Shon, H. K., & Hong, S. (2017). Dewatering of activated sludge by forward osmosis (FO) with ultrasound for fouling control. Desalination, 421, 79–88. https://doi.org/10.1016/j.desal.2017.02.010
Leong, T., Ashokkumar, M., & Kentish, S. (2011). THE FUNDAMENTALS OF POWER ULTRASOUND - A REVIEW. http://minerva-access.unimelb.edu.au/handle/11343/123494
Li, J.-Y., Ni, Z.-Y., Zhou, Z.-Y., Hu, Y.-X., Xu, X.-H., & Cheng, L.-H. (2018). Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. Journal of Membrane Science, 552, 213–221. https://doi.org/10.1016/j.memsci.2018.02.006
Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58(Supplement C), 179–197. https://doi.org/10.1016/j.watres.2014.03.045
Madaeni, S. S. (1999). The application of membrane technology for water disinfection. Water Research, 33(2), 301–308. https://doi.org/10.1016/S0043-1354(98)00212-7
Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.-M., Syzaret, P.-Y., & Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220. https://doi.org/10.1016/S0376-7388(00)00534-2
Mat Nawi, N., Bilad, M., Anath, G., Nordin, N., Kurnia, J., Wibisono, Y., & Arahman, N. (2020). The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment. Membranes, 10(9), 225. https://doi.org/10.3390/membranes10090225
Minier-Matar, J., Hussain, A., Janson, A., Wang, R., Fane, A. G., & Adham, S. (2015). Application of forward osmosis for reducing volume of produced/Process water from oil and gas operations. Desalination, 376(Supplement C), 1–8. https://doi.org/10.1016/j.desal.2015.08.008
Minier-Matar, J., Santos, A., Hussain, A., Janson, A., Wang, R., Fane, A. G., & Adham, S. (2016). Application of Hollow Fiber Forward Osmosis Membranes for Produced and Process Water Volume Reduction: An Osmotic Concentration Process. Environmental Science & Technology, 50(11), 6044–6052. https://doi.org/10.1021/acs.est.5b04801
Mulder, M. (1996). Basic Principles of Membrane Technology. Springer Science & Business Media.
Nadav, N. (1999). Boron Removal From Seawater Reverse Osmosis. Permeate Utilizing Selective Ion Exchange Resin. Desalination, 124, 131–135. https://doi.org/10.1016/S0011-9164(99)00097-1
Nawi, N. I. M., Arifin, S. N. H. M., Hizam, S. M., Rampun, E. L. A., Bilad, M. R., Elma, M., Khan, A. L., Wibisono, Y., & Jaafar, J. (2020). Chlorella vulgaris broth harvesting via stand-alone forward osmosis using seawater draw solution. Bioresource Technology Reports, 9, 100394. https://doi.org/10.1016/j.biteb.2020.100394
Nguyen, N. C., Nguyen, H. T., Chen, S.-S., Nguyen, N. T., & Li, C.-W. (2015). Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 72(8), 1301–1307. https://doi.org/10.2166/wst.2015.341
Nourbakhsh, H., Emam-Djomeh, Z., Mirsaeedghazi, H., Omid, M., & Moieni, S. (2014). Study of different fouling mechanisms during membrane clarification of red plum juice. International Journal of Food Science & Technology, 49(1), 58–64. https://doi.org/10.1111/ijfs.12274
Psoch, C., & Schiewer, S. (2006). Anti-fouling application of air sparging and backflushing for MBR. Journal of Membrane Science, 283(1), 273–280. https://doi.org/10.1016/j.memsci.2006.06.042
Rahm, B. G., & Riha, S. J. (2012). Toward strategic management of shale gas development: Regional, collective impacts on water resources. Environmental Science & Policy, 17(Supplement C), 12–23. https://doi.org/10.1016/j.envsci.2011.12.004
Rahm, D. (2011). Regulating hydraulic fracturing in shale gas plays: The case of Texas. Energy Policy, 39(5), 2974–2981. https://doi.org/10.1016/j.enpol.2011.03.009
Razak, N. N. A. N., Rahmawati, R., Bilad, M. R., Pratiwi, A. E., Elma, M., Nawi, N. I. M., Jaafar, J., & Lam, M. K. (2020). Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration. Bioresource Technology Reports, 11, 100429. https://doi.org/10.1016/j.biteb.2020.100429
Seppälä, A., & Lampinen, M. J. (2004). On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, 28(4), 283–296. https://doi.org/10.1016/j.expthermflusci.2003.10.001
Sirivedhin, T., McCue, J., & Dallbauman, L. (2004). Reclaiming produced water for beneficial use: Salt removal by electrodialysis. Journal of Membrane Science, 243(1), 335–343. https://doi.org/10.1016/j.memsci.2004.06.038
Soice, N. P., Maladono, A. C., Takigawa, D. Y., Norman, A. D., Krantz, W. B., & Greenberg, A. R. (2003). Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 90(5), 1173–1184. https://doi.org/10.1002/app.12774
Sourirajan, S., & Agrawal, J. P. (1969). REVERSE OSMOSIS. Industrial & Engineering Chemistry, 61(11), 62–89. https://doi.org/10.1021/ie50719a007
Spellman, F. R. (2013). Handbook of Water and Wastewater Treatment Plant Operations (3rd ed.). CRC Press.
Sutzkover-Gutman, I., & Hasson, D. (2010). Feed water pretreatment for desalination plants. Desalination, 264(3), 289–296. https://doi.org/10.1016/j.desal.2010.07.014
Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., & Fane, A. G. (2010). Coupled effects of internal concentration polarisation and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, 354(1), 123–133. https://doi.org/10.1016/j.memsci.2010.02.059
Thorsen, T. (2004). Concentration polarisation by natural organic matter (NOM) in NF and UF. Journal of Membrane Science, 233(1), 79–91. https://doi.org/10.1016/j.memsci.2004.01.003
Veil, J. A., Puder, M. G., & Elcock, D. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. (ANL/EA/RP-112631). Argonne National Lab., IL (US). https://doi.org/10.2172/821666
Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J. (2004). A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane. (ANL/EA/RP-112631). Argonne National Lab., IL (US). https://doi.org/10.2172/821666
Velmurugan, V., & Srithar, K. (2008). Prospects and scopes of solar pond: A detailed review. Renewable and Sustainable Energy Reviews, 12(8), 2253–2263. https://doi.org/10.1016/j.rser.2007.03.011
Wang, F., & Tarabara, V. V. (2008). Pore blocking mechanisms during early stages of membrane fouling by colloids. Journal of Colloid and Interface Science, 328(2), 464–469. https://doi.org/10.1016/j.jcis.2008.09.028
Wang, X., Hu, T., Wang, Z., Li, X., & Ren, Y. (2017). Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Research, 123, 505–512. https://doi.org/10.1016/j.watres.2017.07.011
Wibisono, Y., & Bilad, M. R. (2020). Design of forward osmosis system. In Current Trends and Future Developments on (Bio-) Membranes (pp. 57–83). Elsevier. https://doi.org/10.1016/B978-0-12-816777-9.00003-4
Xia, L., Law, A. W.-K., & Fane, A. G. (2013). Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. Water Research, 47(11), 3762–3772. https://doi.org/10.1016/j.watres.2013.04.042
Yu, Y., Lee, S., & Maeng, S. K. (2016). Forward osmosis membrane fouling and cleaning for wastewater reuse. Journal of Water Reuse and Desalination, jwrd2016023. https://doi.org/10.2166/wrd.2016.023
Zhang, S., Wang, P., Fu, X., & Chung, T.-S. (2014a). Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 52(Supplement C), 112–121. https://doi.org/10.1016/j.watres.2013.12.044
Zhang, S., Wang, P., Fu, X., & Chung, T.-S. (2014b). Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 52(Supplement C), 112–121. https://doi.org/10.1016/j.watres.2013.12.044
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Shafiq Mohd Hizam, Muhammad Roil Bilad, Nik Abdul Hadi Md Nordin, Norazanita Shamsuddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika agree to the following terms:
- For all articles published in Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agrees to implement a non-exclusive transfer of publishing rights to the journals.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

