Forward Osmosis for Produced Water Treatment: A Comprehensive Review

Authors

  • Shafiq Mohd Hizam Universiti Teknologi PETRONAS
  • Muhammad Roil Bilad Universiti Brunei Darussalam
  • Nik Abdul Hadi Md Nordin Universiti Teknologi PETRONAS
  • Norazanita Shamsuddin Universiti Brunei Darussalam

DOI:

https://doi.org/10.36312/esaintika.v5i3.542

Keywords:

forward osmosis, produced water, fouling control

Abstract

During crude oil and natural gas extraction from a reservoir, a large amount of water is also produced. The water fraction contains oil, grease, organic and inorganic constituents, called produced water (PW). Over the years, efficient treatment of PW has been concerned. PW has been treated with various technologies, namely floatation, filtration, coagulation/flocculation, or biological processes. Those technologies were assembled to achieve discharge standards while minimizing the cost. Exploration of membrane-based technologies for the treatment of PW has recently been reported, including the emerging forward osmosis (FO) process. This paper reviews the research progress on the FO process for PW treatment. A brief introduction to the traditional treatment technologies is first provided. Next, the basics of the FO process and research progress on the application of FO on PW treatment are discussed. Finally, techniques for fouling control in FO are reviewed, namely osmotic backwashing, ultrasound, chemical cleaning, and air sparging.

Downloads

Download data is not yet available.

Author Biographies

Shafiq Mohd Hizam, Universiti Teknologi PETRONAS

https://www.scopus.com/authid/detail.uri?authorId=56151729700

Muhammad Roil Bilad, Universiti Brunei Darussalam

Scopus ID: 36999741400

References

Abd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., Putra, Z. A., & Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613

Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009a). The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1), 10–21. https://doi.org/10.1016/j.desal.2008.02.022

Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009b). The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1), 10–21. https://doi.org/10.1016/j.desal.2008.02.022

Adewumi, M. A., Erb, J. E., & Watson, R. W. (1992). Initial Design Considerations for a Cost Effective Treatment of Stripper Oil Well Produced Water. In Produced Water (pp. 511–522). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2902-6_40

Ahmad, A. L., Lah, N. F. C., Ismail, S., & Ooi, B. S. (2012). Membrane Antifouling Methods and Alternatives: Ultrasound Approach. Separation & Purification Reviews, 41(4), 318–346. https://doi.org/10.1080/15422119.2011.617804

Al-Furaiji, M. (2016). Hyper-saline produced water treatment for beneficial use. https://doi.org/10.3990/1.9789036541565

Alzahrani, S., Mohammad, A. W., Hilal, N., Abdullah, P., & Jaafar, O. (2013). Identification of foulants, fouling mechanisms and cleaning efficiency for NF and RO treatment of produced water. Separation and Purification Technology, 118(Supplement C), 324–341. https://doi.org/10.1016/j.seppur.2013.07.016

Arthur, J., Langhus, B., & Patel, C. (2005). Technical summary of oil and gas produced water treatment technologies (p. 53). ALL Consulting, LLC.

Bell, E. A., Poynor, T. E., Newhart, K. B., Regnery, J., Coday, B. D., & Cath, T. Y. (2017a). Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science, 525(Supplement C), 77–88. https://doi.org/10.1016/j.memsci.2016.10.032

Bell, E. A., Poynor, T. E., Newhart, K. B., Regnery, J., Coday, B. D., & Cath, T. Y. (2017b). Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science, 525(Supplement C), 77–88. https://doi.org/10.1016/j.memsci.2016.10.032

Bilad, M. R. (2017). Module-scale simulation of forward osmosis module-part B: Modified Spiral-Wound. Indonesian Journal of Science and Technology, 2(2), 211. https://doi.org/10.17509/ijost.v2i2.7998

Bilad, M. R., Mezohegyi, G., Declerck, P., & Vankelecom, I. F. J. (2012). Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors. Water Research, 46(1), 63–72. https://doi.org/10.1016/j.watres.2011.10.026

Bilad, M. R., Qing, L., & Fane, A. G. (2018). Non-linear least-square fitting method for characterization of forward osmosis membrane. Journal of Water Process Engineering, 25, 70–80. https://doi.org/10.1016/j.jwpe.2018.06.011

Boysen, J., Harju, J., Shaw, B., Fosdick, M., Grisanti, A., & Sorensen, J. (1999). The current status of commercial deployment of the freeze thaw evaporation treatment of produced water. SPE/EPA Exploration and Production Environmental Conference, Richardson, TX. https://doi.org/10.2118/52700-MS

Çakmakce, M., Kayaalp, N., & Koyuncu, I. (2008). Desalination of produced water from oil production fields by membrane processes. Desalination, 222(1), 176–186. https://doi.org/10.1016/j.desal.2007.01.147

Casaday, A. L. (1993, January 1). Advances in Flotation Unit Design for Produced Water Treatment. SPE Production Operations Symposium. https://doi.org/10.2118/25472-MS

Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1), 70–87. https://doi.org/10.1016/j.memsci.2006.05.048

Chan, C. C. V., Bérubé, P. R., & Hall, E. R. (2007). Shear profiles inside gas sparged submerged hollow fiber membrane modules. Journal of Membrane Science, 297(1), 104–120. https://doi.org/10.1016/j.memsci.2007.03.032

Chowdhury, M. R., Ren, J., Reimund, K., & McCutcheon, J. R. (2017). A hybrid dead-end/cross-flow forward osmosis system for evaluating osmotic flux performance at high recovery of produced water. Desalination, 421(Supplement C), 127–134. https://doi.org/10.1016/j.desal.2016.08.021

Chun, Y., Mulcahy, D., Zou, L., & Kim, I. S. (2017). A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes, 7(2). https://doi.org/10.3390/membranes7020030

Chun, Y., Qing, L., Sun, G., Bilad, M. R., Fane, A. G., & Chong, T. H. (2018). Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance. Desalination, 445, 75–84. https://doi.org/10.1016/j.desal.2018.07.030

Clifford, D. A. (1999). Chapter 9: Ion Exchange and Inorganic Adsorption. In Water Quality and Treatment: A Handbook of Community Water Supplies (5th ed.). McGraw-Hill.

Coday, B. D., Hoppe-Jones, C., Wandera, D., Shethji, J., Herron, J., Lampi, K., Snyder, S. A., & Cath, T. Y. (2016). Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. Journal of Membrane Science, 499, 491–502. https://doi.org/10.1016/j.memsci.2015.09.031

Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., & Cath, T. Y. (2014a). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333, 23–35.

Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., & Cath, T. Y. (2014b). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333(1), 23–35. https://doi.org/10.1016/j.desal.2013.11.014

Colorado School of Mines. (2009). Technical assessment of produced water treatment technologies. An Integrated Framework for Treatment and Management of Produced Water. RPSEA Project 07122-12, Colorado, 8–128.

Cornelissen, E. R., Harmsen, D., de Korte, K. F., Ruiken, C. J., Qin, J.-J., Oo, H., & Wessels, L. P. (2008). Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 319(1), 158–168. https://doi.org/10.1016/j.memsci.2008.03.048

Cui, Z. F., Chang, S., & Fane, A. G. (2003). The use of gas bubbling to enhance membrane processes. Journal of Membrane Science, 221(1), 1–35. https://doi.org/10.1016/S0376-7388(03)00246-1

Ducom, G., Matamoros, H., & Cabassud, C. (2002). Air sparging for flux enhancement in nanofiltration membranes: Application to O/W stabilized and non-stabilized emulsions. Journal of Membrane Science, 204(1), 221–236. https://doi.org/10.1016/S0376-7388(02)00044-3

Duong, P. H. H., & Chung, T.-S. (2014). Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil–water. Journal of Membrane Science, 452(Supplement C), 117–126. https://doi.org/10.1016/j.memsci.2013.10.030

Ebrahimi, M., Ashaghi, K. S., Engel, L., Willershausen, D., Mund, P., Bolduan, P., & Czermak, P. (2009). Characterization and application of different ceramic membranes for the oilfield produced water treatment. Desalination, 245(1), 533–540. https://doi.org/10.1016/j.desal.2009.02.017

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009a). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009b). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009c). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044

Flemming, H.-C., Schaule, G., Griebe, T., Schmitt, J., & Tamachkiarowa, A. (1997). Biofouling—The Achilles heel of membrane processes. Desalination, 113(2), 215–225. https://doi.org/10.1016/S0011-9164(97)00132-X

Hancock, N. T., & Cath, T. Y. (2009). Solute Coupled Diffusion in Osmotically Driven Membrane Processes. Environmental Science & Technology, 43(17), 6769–6775. https://doi.org/10.1021/es901132x

He, Y., & Jiang, Z.-W. (2008). Technology review: Treating oilfield wastewater. Filtration & Separation, 45(5), 14–16. https://doi.org/10.1016/S0015-1882(08)70174-5

Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleton, E. W., Beaudry, E. G., Xu, P., & Cath, T. Y. (2013a). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312(Supplement C), 60–66. https://doi.org/10.1016/j.desal.2012.05.037

Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleton, E. W., Beaudry, E. G., Xu, P., & Cath, T. Y. (2013b). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312(Supplement C), 60–66. https://doi.org/10.1016/j.desal.2012.05.037

Hizam, S. M., Bilad, M. R., Nordin, N. A. H., Sambudi, N. S., Wirzal, M. D. H., Yusof, N., Klaysom, C., & Jaafar, J. (2021). Inclined forward osmosis module system for fouling control in sustainable produced water treatment using seawater as draw solution. Journal of Water Process Engineering, 40, 101752. https://doi.org/10.1016/j.jwpe.2020.101752

Hoover, L. A., Phillip, W. A., Tiraferri, A., Yip, N. Y., & Elimelech, M. (2011). Forward with Osmosis: Emerging Applications for Greater Sustainability. Environmental Science & Technology, 45(23), 9824–9830. https://doi.org/10.1021/es202576h

Hutchings, N. R., Appleton, E. W., & McGinnis, R. A. (2010, January 1). Making High Quality Frac Water out of Oilfield Waste. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/135469-MS

Igunnu, E. T., & Chen, G. Z. (2014a). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049

Igunnu, E. T., & Chen, G. Z. (2014b). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049

Jankhah, S., & Bérubé, P. R. (2014). Pulse bubble sparging for fouling control. Separation and Purification Technology, 134(Supplement C), 58–65. https://doi.org/10.1016/j.seppur.2014.07.023

Johnson, B. M., Kanagy, L. E., Rodgers, J. H., & Castle, J. W. (2008). Chemical, Physical, and Risk Characterization of Natural Gas Storage Produced Waters. Water, Air, and Soil Pollution, 191(1), 33–54. https://doi.org/10.1007/s11270-007-9605-8

Kim, C., Lee, S., & Hong, S. (2012). Application of osmotic backwashing in forward osmosis: Mechanisms and factors involved. Desalination and Water Treatment, 43(1–3), 314–322. https://doi.org/10.1080/19443994.2012.672215

Kim, E.-S., Liu, Y., & Gamal El-Din, M. (2011). The effects of pre-treatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water. Separation and Purification Technology, 81(3), 418–428. https://doi.org/10.1016/j.seppur.2011.08.016

Klaysom, C., Cath, T. Y., Depuydt, T., & Vankelecom, I. F. J. (2013). Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 42(16), 6959–6989. https://doi.org/10.1039/c3cs60051c

Kobayashi, T., Kobayashi, T., Hosaka, Y., & Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185–190. https://doi.org/10.1016/S0041-624X(02)00462-6

Lamminen, M. O., Walker, H. W., & Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1), 213–223. https://doi.org/10.1016/j.memsci.2004.02.031

Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Desalination, 287, 190–199. https://doi.org/10.1016/j.desal.2011.04.004

Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010a). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1), 34–39. https://doi.org/10.1016/j.memsci.2010.08.036

Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010b). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1), 34–39. https://doi.org/10.1016/j.memsci.2010.08.036

Lee, S., Shon, H. K., & Hong, S. (2017). Dewatering of activated sludge by forward osmosis (FO) with ultrasound for fouling control. Desalination, 421, 79–88. https://doi.org/10.1016/j.desal.2017.02.010

Leong, T., Ashokkumar, M., & Kentish, S. (2011). THE FUNDAMENTALS OF POWER ULTRASOUND - A REVIEW. http://minerva-access.unimelb.edu.au/handle/11343/123494

Li, J.-Y., Ni, Z.-Y., Zhou, Z.-Y., Hu, Y.-X., Xu, X.-H., & Cheng, L.-H. (2018). Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. Journal of Membrane Science, 552, 213–221. https://doi.org/10.1016/j.memsci.2018.02.006

Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58(Supplement C), 179–197. https://doi.org/10.1016/j.watres.2014.03.045

Madaeni, S. S. (1999). The application of membrane technology for water disinfection. Water Research, 33(2), 301–308. https://doi.org/10.1016/S0043-1354(98)00212-7

Masselin, I., Chasseray, X., Durand-Bourlier, L., Lainé, J.-M., Syzaret, P.-Y., & Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220. https://doi.org/10.1016/S0376-7388(00)00534-2

Mat Nawi, N., Bilad, M., Anath, G., Nordin, N., Kurnia, J., Wibisono, Y., & Arahman, N. (2020). The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment. Membranes, 10(9), 225. https://doi.org/10.3390/membranes10090225

Minier-Matar, J., Hussain, A., Janson, A., Wang, R., Fane, A. G., & Adham, S. (2015). Application of forward osmosis for reducing volume of produced/Process water from oil and gas operations. Desalination, 376(Supplement C), 1–8. https://doi.org/10.1016/j.desal.2015.08.008

Minier-Matar, J., Santos, A., Hussain, A., Janson, A., Wang, R., Fane, A. G., & Adham, S. (2016). Application of Hollow Fiber Forward Osmosis Membranes for Produced and Process Water Volume Reduction: An Osmotic Concentration Process. Environmental Science & Technology, 50(11), 6044–6052. https://doi.org/10.1021/acs.est.5b04801

Mulder, M. (1996). Basic Principles of Membrane Technology. Springer Science & Business Media.

Nadav, N. (1999). Boron Removal From Seawater Reverse Osmosis. Permeate Utilizing Selective Ion Exchange Resin. Desalination, 124, 131–135. https://doi.org/10.1016/S0011-9164(99)00097-1

Nawi, N. I. M., Arifin, S. N. H. M., Hizam, S. M., Rampun, E. L. A., Bilad, M. R., Elma, M., Khan, A. L., Wibisono, Y., & Jaafar, J. (2020). Chlorella vulgaris broth harvesting via stand-alone forward osmosis using seawater draw solution. Bioresource Technology Reports, 9, 100394. https://doi.org/10.1016/j.biteb.2020.100394

Nguyen, N. C., Nguyen, H. T., Chen, S.-S., Nguyen, N. T., & Li, C.-W. (2015). Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 72(8), 1301–1307. https://doi.org/10.2166/wst.2015.341

Nourbakhsh, H., Emam-Djomeh, Z., Mirsaeedghazi, H., Omid, M., & Moieni, S. (2014). Study of different fouling mechanisms during membrane clarification of red plum juice. International Journal of Food Science & Technology, 49(1), 58–64. https://doi.org/10.1111/ijfs.12274

Psoch, C., & Schiewer, S. (2006). Anti-fouling application of air sparging and backflushing for MBR. Journal of Membrane Science, 283(1), 273–280. https://doi.org/10.1016/j.memsci.2006.06.042

Rahm, B. G., & Riha, S. J. (2012). Toward strategic management of shale gas development: Regional, collective impacts on water resources. Environmental Science & Policy, 17(Supplement C), 12–23. https://doi.org/10.1016/j.envsci.2011.12.004

Rahm, D. (2011). Regulating hydraulic fracturing in shale gas plays: The case of Texas. Energy Policy, 39(5), 2974–2981. https://doi.org/10.1016/j.enpol.2011.03.009

Razak, N. N. A. N., Rahmawati, R., Bilad, M. R., Pratiwi, A. E., Elma, M., Nawi, N. I. M., Jaafar, J., & Lam, M. K. (2020). Finned spacer for enhancing the impact of air bubbles for membrane fouling control in Chlorella vulgaris filtration. Bioresource Technology Reports, 11, 100429. https://doi.org/10.1016/j.biteb.2020.100429

Seppälä, A., & Lampinen, M. J. (2004). On the non-linearity of osmotic flow. Experimental Thermal and Fluid Science, 28(4), 283–296. https://doi.org/10.1016/j.expthermflusci.2003.10.001

Sirivedhin, T., McCue, J., & Dallbauman, L. (2004). Reclaiming produced water for beneficial use: Salt removal by electrodialysis. Journal of Membrane Science, 243(1), 335–343. https://doi.org/10.1016/j.memsci.2004.06.038

Soice, N. P., Maladono, A. C., Takigawa, D. Y., Norman, A. D., Krantz, W. B., & Greenberg, A. R. (2003). Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 90(5), 1173–1184. https://doi.org/10.1002/app.12774

Sourirajan, S., & Agrawal, J. P. (1969). REVERSE OSMOSIS. Industrial & Engineering Chemistry, 61(11), 62–89. https://doi.org/10.1021/ie50719a007

Spellman, F. R. (2013). Handbook of Water and Wastewater Treatment Plant Operations (3rd ed.). CRC Press.

Sutzkover-Gutman, I., & Hasson, D. (2010). Feed water pretreatment for desalination plants. Desalination, 264(3), 289–296. https://doi.org/10.1016/j.desal.2010.07.014

Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., & Fane, A. G. (2010). Coupled effects of internal concentration polarisation and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, 354(1), 123–133. https://doi.org/10.1016/j.memsci.2010.02.059

Thorsen, T. (2004). Concentration polarisation by natural organic matter (NOM) in NF and UF. Journal of Membrane Science, 233(1), 79–91. https://doi.org/10.1016/j.memsci.2004.01.003

Veil, J. A., Puder, M. G., & Elcock, D. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. (ANL/EA/RP-112631). Argonne National Lab., IL (US). https://doi.org/10.2172/821666

Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J. (2004). A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane. (ANL/EA/RP-112631). Argonne National Lab., IL (US). https://doi.org/10.2172/821666

Velmurugan, V., & Srithar, K. (2008). Prospects and scopes of solar pond: A detailed review. Renewable and Sustainable Energy Reviews, 12(8), 2253–2263. https://doi.org/10.1016/j.rser.2007.03.011

Wang, F., & Tarabara, V. V. (2008). Pore blocking mechanisms during early stages of membrane fouling by colloids. Journal of Colloid and Interface Science, 328(2), 464–469. https://doi.org/10.1016/j.jcis.2008.09.028

Wang, X., Hu, T., Wang, Z., Li, X., & Ren, Y. (2017). Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Research, 123, 505–512. https://doi.org/10.1016/j.watres.2017.07.011

Wibisono, Y., & Bilad, M. R. (2020). Design of forward osmosis system. In Current Trends and Future Developments on (Bio-) Membranes (pp. 57–83). Elsevier. https://doi.org/10.1016/B978-0-12-816777-9.00003-4

Xia, L., Law, A. W.-K., & Fane, A. G. (2013). Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. Water Research, 47(11), 3762–3772. https://doi.org/10.1016/j.watres.2013.04.042

Yu, Y., Lee, S., & Maeng, S. K. (2016). Forward osmosis membrane fouling and cleaning for wastewater reuse. Journal of Water Reuse and Desalination, jwrd2016023. https://doi.org/10.2166/wrd.2016.023

Zhang, S., Wang, P., Fu, X., & Chung, T.-S. (2014a). Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 52(Supplement C), 112–121. https://doi.org/10.1016/j.watres.2013.12.044

Zhang, S., Wang, P., Fu, X., & Chung, T.-S. (2014b). Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 52(Supplement C), 112–121. https://doi.org/10.1016/j.watres.2013.12.044

Downloads

Published

2021-11-30

How to Cite

Mohd Hizam, S., Bilad, M. R., Md Nordin, N. A. H., & Shamsuddin, N. (2021). Forward Osmosis for Produced Water Treatment: A Comprehensive Review. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 5(3), 253–272. https://doi.org/10.36312/esaintika.v5i3.542

Issue

Section

Natural and Applied Sciences