Can Virtual Reality Increases Students Interest in Computational Chemistry Course? A Review

Authors

DOI:

https://doi.org/10.36312/esaintika.v6i3.885

Keywords:

virtual reality, computer simulation, computational chemistry, undergraduate, molecular dynamics, laboratory computing

Abstract

Computational chemistry is one of the branches in chemistry that implies the finding of theoretical chemistry into efficient computer programming to monitor, calculate and examine the properties of molecules and solids, adopting these programs to real chemical problems. Intersection between virtual reality (VR) and computational chemistry would bring the strength and improve the weakness of the system for better chemistry field discovery among scholars that level up the educational development. Thus, introduction of VR as an educational medium will eventually add another new technical skill for good purpose mainly for processing data and information. This paper reviews the role of VR as a teaching device in computational chemistry courses. The innovation in teaching and learning helps students to collect more reliable and quality data on the chemical analysis that is not available from the experimental works. This will provide source and bridge for the students to easily collect and analyse data in comprehensive understanding especially deep explanation at atomic level. This teaching strategy also stimulate and attract the interest of the students to be more joyful and native in learning.

Downloads

Download data is not yet available.

References

Agnesi, C., Vedovato, F., Schiavon, M., Dequal, D., Calderaro, L., Tomasin, M., Marangon, D. G., Stanco, A., Luceri, V., Bianco, G., Vallone, G., & Villoresi, P. (2018). Exploring the boundaries of quantum mechanics: advances in satellite quantum communications. Philos Trans A Math Phys Eng Sci, 376(2123). doi:10.1098/rsta.2017.0461

Astuti, T. N., Sugiyarto, K. H., & Ikhsan, J. (2020). Effect of 3D Visualization on Students’ Critical Thinking Skills and Scientific Attitude in Chemistry. International Journal of Instruction, 13(1), 151-164. doi:10.29333/iji.2020.13110a

Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci Total Environ, 728, 138882. doi:10.1016/j.scitotenv.2020.138882

Chaytor, J. L., Al Mughalaq, M., & Butler, H. (2017). Development and Use of Online Prelaboratory Activities in Organic Chemistry To Improve Students’ Laboratory Experience. Journal of Chemical Education, 94(7), 859-866. doi:10.1021/acs.jchemed.6b00850

Chirikov, I., Semenova, T., Maloshonok, N., Bettinger, E., & Kizilcec, R. F. (2020). Online education platforms scale college STEM instruction with equivalent learning outcomes at lower cost. Science Advances, 6(15), 1-10.

Cipresso, P., Serino, S., & Riva, G. (2016). Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science. BMC Med Inform Decis Mak, 16, 37. doi:10.1186/s12911-016-0276-5

Cruz, E., Montoya, A., & Ágreda, J. (2020). Chemical Kinetics Simulator (Chemkinlator): A friendly user interface for chemical kinetics simulations. Colombian Journal of Chemistry, 49(1), 40-47. doi:10.15446/rev.colomb.quim.v1n49.83298

Dalgarno, B., Bishop, A. G., Adlong, W., & Bedgood, D. R. (2009). Effectiveness of a Virtual Laboratory as a preparatory resource for Distance Education chemistry students. Computers & Education, 53(3), 853-865. doi:10.1016/j.compedu.2009.05.005

Dalgarno, B., Bishop, A. G., Jr, D. R. B., & Adlong, W. (2012). What factors contribute to students’ confidence in chemistry laboratory sessions and does preparation in a virtual laboratory help? Paper presented at the Australian Conference on Science and Mathematics Education.

Deeks, H., Walters, R., Barnoud, J., Glowacki, D., & Mulholland, A. (2020). Interactive Molecular Dynamics in Virtual Reality (iMD-VR) Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. ChemRxiv. Preprint. doi:10.26434/chemrxiv.12834335.v1

Di Lernia, D., Cipresso, P., Pedroli, E., & Riva, G. (2018). Toward an Embodied Medicine: A Portable Device with Programmable Interoceptive Stimulation for Heart Rate Variability Enhancement. Sensors (Basel), 18(8). doi:10.3390/s18082469

Dunnagan, C. L., Dannenberg, D. A., Cuales, M. P., Earnest, A. D., Gurnsey, R. M., & Gallardo-Williams, M. T. (2019). Production and Evaluation of a Realistic Immersive Virtual Reality Organic Chemistry Laboratory Experience: Infrared Spectroscopy. Journal of Chemical Education, 97(1), 258-262. doi:10.1021/acs.jchemed.9b00705

Feiner, S., MacIntyre, B., Hollerer, T., & Webster, A. (1997). A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment. Paper presented at the Digest of Papers. First International Symposium on Wearable Computers, Cambridge, MA: IEEE.

Ferrell, J. B., Campbell, J. P., McCarthy, D. R., McKay, K. T., Hensinger, M., Srinivasan, R., Zhao, X., Wurthmann, A., Li, J., & Schneebeli, S. T. (2019). Chemical Exploration with Virtual Reality in Organic Teaching Laboratories. Journal of Chemical Education, 96(9), 1961-1966. doi:10.1021/acs.jchemed.9b00036

Fombona, J., Pascual, M. A., & Pérez Ferra, M. (2020). Analysis of the Educational Impact of M-Learning and Related Scientific Research. Journal of New Approaches in Educational Research, 9(2). doi:10.7821/naer.2020.7.470

Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., Spanlang, B., & Slater, M. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol Med, 47(14), 2393-2400. doi:10.1017/S003329171700040X

Goddard, T. D., Brilliant, A. A., Skillman, T. L., Vergenz, S., Tyrwhitt-Drake, J., Meng, E. C., & Ferrin, T. E. (2018). Molecular Visualization on the Holodeck. J Mol Biol, 430(21), 3982-3996. doi:10.1016/j.jmb.2018.06.040

Hensen, C., Glinowiecka-Cox, G., & Barbera, J. (2020). Assessing Differences between Three Virtual General Chemistry Experiments and Similar Hands-On Experiments. Journal of Chemical Education, 97(3), 616-625. doi:10.1021/acs.jchemed.9b00748

Hodges, G. W., Wang, L., Lee, J., Cohen, A., & Jang, Y. (2018). An exploratory study of blending the virtual world and the laboratory experience in secondary chemistry classrooms. Computers & Education, 122, 179-193. doi:10.1016/j.compedu.2018.03.003

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem, 29(11), 1859-1865. doi:10.1002/jcc.20945

Kapici, H. O., Akcay, H., & de Jong, T. (2020). How do different laboratory environments influence students’ attitudes toward science courses and laboratories? Journal of Research on Technology in Education, 52(4), 534-549. doi:10.1080/15391523.2020.1750075

Kolil, V. K., Muthupalani, S., & Achuthan, K. (2020). Virtual experimental platforms in chemistry laboratory education and its impact on experimental self-efficacy. International Journal of Educational Technology in Higher Education, 17(1). doi:10.1186/s41239-020-00204-3

Luckerson, V. (2014). Facebook Buying Oculus Virtual-Reality Company for $2 Billion. Time.com. Retrieved from https://time.com/37842/facebook-oculus-rift/

Makransky, G., Petersen, G. B., & Klingenberg, S. (2020). Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? British Journal of Educational Technology, 51(6), 2079-2097. doi:10.1111/bjet.12954

Nanome. (2022). Nanome: Creating Powerful, Collaborative, and Scientific VR Tools.

Neri, S. G., Cardoso, J. R., Cruz, L., Lima, R. M., de Oliveira, R. J., Iversen, M. D., & Carregaro, R. L. (2017). Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clin Rehabil, 31(10), 1292-1304. doi:10.1177/0269215517694677

Pastel, S., Petri, K., Burger, D., Marschal, H., Chen, C. H., & Witte, K. (2022). Influence of body visualization in VR during the execution of motoric tasks in different age groups. PLoS One, 17(1), e0263112. doi:10.1371/journal.pone.0263112

Patel, C., Garg, N., Panigrahi, S. K., & Kumar, V. (2022). Signal processing with MATLAB and Python for reallife structural health monitoring: A comparative implementation for post-processing. doi:10.21203/rs.3.rs-1856394/v1

Qin, T., Cook, M., & Courtney, M. (2020). Exploring Chemistry with Wireless, PC-Less Portable Virtual Reality Laboratories. Journal of Chemical Education, 98(2), 521-529. doi:10.1021/acs.jchemed.0c00954

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147. doi:10.1016/j.compedu.2019.103778

Rapaport, D. C. (2014). Molecular dynamics simulation: a tool for exploration and discovery using simple models. J Phys Condens Matter, 26(50), 503104. doi:10.1088/0953-8984/26/50/503104

Riva, G. (2018). The neuroscience of body memory: From the self through the space to the others. Cortex, 104, 241-260. doi:10.1016/j.cortex.2017.07.013

Ryoo, K., Bedell, K., & Swearingen, A. (2018). Promoting Linguistically Diverse Students’ Short-Term and Long-Term Understanding of Chemical Phenomena Using Visualizations. Journal of Science Education and Technology, 27(6), 508-522. doi:10.1007/s10956-018-9739-z

Sarmouk, C., Ingram, M. J., Read, C., Curdy, M. E., Spall, E., Farlow, A., Kristova, P., Quadir, A., Maatta, S., Stephens, J., Smith, C., Baker, C., & Patel, B. A. (2019). Pre-laboratory online learning resource improves preparedness and performance in pharmaceutical sciences practical classes. Innovations in Education and Teaching International, 57(4), 460-471. doi:10.1080/14703297.2019.1604247

Scavarelli, A., Arya, A., & Teather, R. J. (2020). Virtual reality and augmented reality in social learning spaces: a literature review. Virtual Reality, 25(1), 257-277. doi:10.1007/s10055-020-00444-8

Schlick, T. (2013). The 2013 Nobel Prize in Chemistry Celebrates Computations in Chemistry and Biology. SIAM News, 46(10).

Schmidt, M., Beck, D., Glaser, N., & Schmidt, C. (2017). Prototype Immersive, Multi-user 3D Virtual Learning Environment for Individuals with Autism to Learn Social and Life Skills: A Virtuoso DBR update. Paper presented at the International Conference on Immersive Learning.

Su, C.-H., & Cheng, T.-W. (2019). A Sustainability Innovation Experiential Learning Model for Virtual Reality Chemistry Laboratory: An Empirical Study with PLS-SEM and IPMA. Sustainability, 11(4). doi:10.3390/su11041027

Downloads

Published

2022-11-30

Issue

Section

Article Review

How to Cite

Jumbri, K., & Ishak, M. A. I. (2022). Can Virtual Reality Increases Students Interest in Computational Chemistry Course? A Review. Jurnal Penelitian Dan Pengkajian Ilmu Pendidikan: E-Saintika, 6(3), 190-201. https://doi.org/10.36312/esaintika.v6i3.885