Charting the Future of Prompt Engineering: Critical Reflections on Methodology, Ethics, and Research Directions

Authors

DOI:

https://doi.org/10.36312/ijece.v4i1.2908

Keywords:

Prompt engineering, Large language model, Bibliometric methodology, Ethical and governance frameworks, Future research directions

Abstract

Prompt engineering has emerged as a transformative strategy for optimizing Large Language Models (LLMs), offering a cost-effective alternative to full model fine-tuning. In a recent bibliometric review, Fatawi et al. (2024) analyzed 437 Scopus-indexed publications from January 2022 to February 2024, using VOSviewer to identify key thematic clusters—including transformer architectures, deep learning innovations, and few-shot learning—and documenting a fivefold increase in related publications over the review period. Building on their macro-level mapping, this commentary extends the discussion by articulating the strategic and democratizing potential of prompt engineering while addressing critical gaps in methodology and ethical oversight. We critique the review’s reliance on a single English-language database, its exclusion of preprints and non-English sources, and its omission of qualitative insights into user practices and system impacts. In response, we offer concrete recommendations to guide future research: diversify data sources for bibliometric analysis, implement rigorous prompt audit frameworks, conduct longitudinal A/B testing in real-world environments, and adopt mixed-methods approaches to capture human-centered dynamics. We also explore emerging synergies—such as quantum-enhanced NLP and neuro-linguistic prompt design—as promising frontiers for advancing prompt optimization. By addressing these gaps, this commentary aims to ensure that prompt engineering evolves not only as a technical solution but as a responsible and inclusive foundation for next-generation AI development.

Author Biography

  • Ni Nyoman Sri Putu Verawati, University of Mataram

    Scopus ID: 57193126887

References

Adeosun, S. (2024). Scopus indexing delays of articles published in major pharmacy practice journals. Innovations in Pharmacy, 15(4), 5. https://doi.org/10.24926/iip.v15i4.6322

An, X., He, J., Bi, B., Wu, G., Xu, J., Yu, W., … Ren, Z. (2024). The role of astrocytes in Alzheimer’s disease: A bibliometric analysis. Frontiers in Aging Neuroscience, 16. https://doi.org/10.3389/fnagi.2024.1481748

Banda, F., Marivate, V., & Nakatumba?Nabende, J. (2025). A few?shot learning approach for a multilingual agro?information question answering system. Applied AI Letters, 6(2). https://doi.org/10.1002/ail2.122

Bausch, J., Subramanian, S., & Piddock, S. (2021). A quantum search decoder for natural language processing. Quantum Machine Intelligence, 3(1). https://doi.org/10.1007/s42484-021-00041-1

Botunac, I., Bakari?, M., & Mateti?, M. (2024). Comparing fine-tuning and prompt engineering for multi-class classification in hospitality review analysis. Applied Sciences, 14(14), 6254. https://doi.org/10.3390/app14146254

Chen, D., Huang, R., Jomy, J., Wong, P., Yan, M., Croke, J., … Raman, S. (2024). Performance of multimodal artificial intelligence chatbots evaluated on clinical oncology cases. JAMA Network Open, 7(10), e2437711. https://doi.org/10.1001/jamanetworkopen.2024.37711

Dana, L., Chhabra, M., & Agarwal, M. (2023). A two-decade history of women’s entrepreneurship research trajectories in developing economies context: Perspectives from India. Journal of Management History, 30(1), 6–28. https://doi.org/10.1108/jmh-11-2022-0064

Demirba?, K., Sayg?l?, S., Y?lmaz, E., Gülmez, R., A?ba?, A., Ta?demir, M., … Canpolat, N. (2025). The potential of ChatGPT as a source of information for kidney transplant recipients and their caregivers. Pediatric Transplantation, 29(3). https://doi.org/10.1111/petr.70068

Dimitsaki, S., Natsiavas, P., & Jaulent, M. (2024). Applying AI to structured real-world data for pharmacovigilance purposes: Scoping review. Journal of Medical Internet Research, 26, e57824. https://doi.org/10.2196/57824

Fan, L. (2024). Artificial intelligence ethics: A dialogue between technological advances and human values. International Journal of Education and Humanities, 14(2), 260–265. https://doi.org/10.54097/tvqkkf40

Fatawi, I., Asy’ari, M., Hunaepi, H., Samsuri, T., & Bilad, M. R. (2024). Empowering language models through advanced prompt engineering: A comprehensive bibliometric review. Indonesian Journal of Science & Technology, 9(2), 441–462. https://doi.org/10.17509/ijost.v9i2.71481

Feng, H., Chen, J., Zhang, Z., Lou, Y., Zhang, S., & Yang, W. (2023). A bibliometric analysis of artificial intelligence applications in macular edema: Exploring research hotspots and frontiers. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1174936

Gimeno, A., Krause, K., D’Souza, S., & Walsh, C. (2024). Completeness and readability of GPT-4-generated multilingual discharge instructions in the pediatric emergency department. JAMIA Open, 7(3). https://doi.org/10.1093/jamiaopen/ooae050

Gurung, B., Liu, P., Harris, P., Sagi, A., Field, R., Sochart, D., … Asopa, V. (2022). Artificial intelligence for image analysis in total hip and total knee arthroplasty. The Bone & Joint Journal, 104-B(8), 929–937. https://doi.org/10.1302/0301-620x.104b8.bjj-2022-0120.r2

Hauna, A., Yunus, A., Fukui, M., & Khomsah, S. (2025). Enhancing LLM efficiency: A literature review of emerging prompt optimization strategies. International Journal on Robotics Automation and Sciences, 7(1), 72–83. https://doi.org/10.33093/ijoras.2025.7.1.9

Heston, T., & Khun, C. (2023). Prompt engineering in medical education. International Medical Education, 2(3), 198–205. https://doi.org/10.3390/ime2030019

Huang, J., Yang, D., Rong, R., Nezafati, K., Treager, C., Chi, Z., … Xie, Y. (2024). A critical assessment of using ChatGPT for extracting structured data from clinical notes. NPJ Digital Medicine, 7(1). https://doi.org/10.1038/s41746-024-01079-8

Jiang, Y., Cai, Y., Zhang, X., Chen, L., Zhou, X., & Chen, Y. (2024). A two-decade bibliometric analysis of laser in ophthalmology: From past to present. Clinical Ophthalmology, 18, 1313–1328. https://doi.org/10.2147/opth.s458840

Johnson, A., Wang, L., Boucher, S., & Fulgoni, A. (2023). Quality by design pilot analysis of FDA regulatory guidance web data usability for innovators in non-Hodgkin lymphoma: Overcoming challenges to CAR-T development. Blood, 142(Suppl. 1), 7169. https://doi.org/10.1182/blood-2023-187280

Johnson-Eilola, J., Selber, S., & York, E. (2024). Can artificial intelligence robots write effective instructions? Journal of Business and Technical Communication, 38(3), 199–212. https://doi.org/10.1177/10506519241239641

Kim, K., Lee, M., Won, H., Kim, M., Kim, Y., & Lee, S. (2023). Multi-stage prompt tuning for political perspective detection in low-resource settings. Applied Sciences, 13(10), 6252. https://doi.org/10.3390/app13106252

Kim, T., Makutonin, M., Sirous, R., & Javan, R. (2025). Optimizing large language models in radiology and mitigating pitfalls: Prompt engineering and fine-tuning. Radiographics, 45(4). https://doi.org/10.1148/rg.240073

Kumar, R., Saxena, S., Kumar, V., Prabha, V., Kumar, R., & Kukreti, A. (2023). Service innovation research: A bibliometric analysis using VOSviewer. Competitiveness Review: An International Business Journal Incorporating Journal of Global Competitiveness, 34(4), 736–760. https://doi.org/10.1108/cr-01-2023-0010

Lai, Q., Spoletini, G., Mennini, G., Laureiro, Z., Tsilimigras, D., Pawlik, T., … Rossi, M. (2020). Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review. World Journal of Gastroenterology, 26(42), 6679–6689. https://doi.org/10.3748/wjg.v26.i42.6679

Lee, L., Hall, R., Stanley, J., & Krebs, J. (2024). Tailored prompting to improve adherence to image-based dietary assessment: Mixed methods study. JMIR mHealth and uHealth, 12, e52074. https://doi.org/10.2196/52074

Leung, C. (2024). Promoting optimal learning with ChatGPT: A comprehensive exploration of prompt engineering in education. Asian Journal of Contemporary Education, 8(2), 104–114. https://doi.org/10.55493/5052.v8i2.5101

Li, W., Chen, X., Deng, X., Wen, H., You, M., Liu, W., … Li, J. (2024). Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. NPJ Digital Medicine, 7(1). https://doi.org/10.1038/s41746-024-01029-4

Liu, Y., Du, H., Niyato, D., Kang, J., Cui, S., Shen, X., … Zhang, P. (2024). Optimizing mobile-edge AI-generated everything (AIGX) services by prompt engineering: Fundamental, framework, and case study. IEEE Network, 38(5), 220–228. https://doi.org/10.1109/mnet.2023.3335255

Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., & Coecke, B. (2023). QNLP in practice: Running compositional models of meaning on a quantum computer. Journal of Artificial Intelligence Research, 76, 1305–1342. https://doi.org/10.1613/jair.1.14329

Maharjan, J., Garikipati, A., Singh, N., Cyrus, L., Sharma, M., Ciobanu, M., … Das, R. (2024). OpenMedLM: Prompt engineering can outperform fine-tuning in medical question-answering with open-source large language models. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-64827-6

Martel, C., Rathje, S., Clark, C., Pennycook, G., Bavel, J., Rand, D., … Linden, S. (2024). On the efficacy of accuracy prompts across partisan lines: An adversarial collaboration. Psychological Science, 35(4), 435–450. https://doi.org/10.1177/09567976241232905

Martovytskyi, V., ?????????, ?., Liashenko, O., Koltun, Y., Liashenko, S., Kis, V., … Yevstrat, D. (2022). Devising an approach to the identification of system users by their behavior using machine learning methods. Eastern-European Journal of Enterprise Technologies, 3(3(117)), 23–34. https://doi.org/10.15587/1729-4061.2022.259099

Mwogosi, A. (2025). Ethical and privacy challenges of integrating generative AI into EHR systems in Tanzania: A scoping review with a policy perspective. Digital Health, 11. https://doi.org/10.1177/20552076251344385

Nyaaba, M., & Zhai, X. (2024). Generative AI professional development needs for teacher educators. Journal of AI, 8(1), 1–13. https://doi.org/10.61969/jai.1385915

Odero, B., Nderitu, D., & Samuel, G. (2024). The ubuntu way: Ensuring ethical AI integration in health research. Wellcome Open Research, 9, 625. https://doi.org/10.12688/wellcomeopenres.23021.1

Park, C. (2025). Ethical artificial intelligence in nursing workforce management and policymaking: Bridging philosophy and practice. Journal of Nursing Management. Advance online publication. https://doi.org/10.1155/jonm/7954013

Parras, J., Almodóvar, A., Apellániz, P., & Zazo, S. (2022). Inverse reinforcement learning: A new framework to mitigate an intelligent backoff attack. IEEE Internet of Things Journal, 9(24), 24790–24799. https://doi.org/10.1109/jiot.2022.3194694

Patil, R., Heston, T., & Bhuse, V. (2024). Prompt engineering in healthcare. Electronics, 13(15), 2961. https://doi.org/10.3390/electronics13152961

Peng, X., Bian, H., Zhao, H., Jia, D., Li, M., Li, W., … Xu, P. (2025). Research hotspots and trends in lung cancer STAS: A bibliometric and visualization analysis. Frontiers in Oncology, 14. https://doi.org/10.3389/fonc.2024.1495911

Peponakis, M., Kapidakis, S., Doerr, M., & Tountasaki, E. (2023). From calculations to reasoning: History, trends and the potential of computational ethnography and computational social anthropology. Social Science Computer Review, 42(1), 84–102. https://doi.org/10.1177/08944393231167692

Que, X., Zhu, S., & Han, B. (2025). Data-driven visualization of the dynamics of geothermal energy and hot dry rock research. Energies, 18(9), 2342. https://doi.org/10.3390/en18092342

Roozenbeek, J., Linden, S., Goldberg, B., Rathje, S., & Lewandowsky, S. (2022). Psychological inoculation improves resilience against misinformation on social media. Science Advances, 8(34), eabo6254. https://doi.org/10.1126/sciadv.abo6254

Ruskanda, F., Abiwardani, M., Syafalni, I., Larasati, H., & Mulyawan, R. (2023). Simple sentiment analysis ansatz for sentiment classification in quantum natural language processing. IEEE Access, 11, 120612–120627. https://doi.org/10.1109/access.2023.3327873

Sacca, L., Lobaina, D., Burgoa, S., Lotharius, K., Moothedan, E., Gilmore, N., … Kitsantas, P. (2024). Promoting artificial intelligence for global breast cancer risk prediction and screening in adult women: A scoping review. Journal of Clinical Medicine, 13(9), 2525. https://doi.org/10.3390/jcm13092525

Saeed, N., Ridzuan, M., Majzoub, R., & Yaqub, M. (2023). Prompt-based tuning of transformer models for multi-center medical image segmentation of head and neck cancer. Bioengineering, 10(7), 879. https://doi.org/10.3390/bioengineering10070879

Samayoa, J., & Albarracín, D. (2025). Bypassing versus correcting misinformation: Efficacy and fundamental processes. Journal of Experimental Psychology: General, 154(1), 18–38. https://doi.org/10.1037/xge0001687

Saraiva, L. (2024). Moral agency and responsibility in AI systems. International Journal of Philosophy, 3(1), 25–36. https://doi.org/10.47941/ijp.1867

Skryd, A., & Lawrence, K. (2024). ChatGPT as a tool for medical education and clinical decision-making on the wards: Case study. JMIR Formative Research, 8, e51346. https://doi.org/10.2196/51346

Stephan, D., Bertsch, A., Burwinkel, M., Vinayahalingam, S., Al-Nawas, B., Kämmerer, P., … Thiem, D. (2024). AI in dental radiology—Improving the efficiency of reporting with ChatGPT: Comparative study. Journal of Medical Internet Research, 26, e60684. https://doi.org/10.2196/60684

Su, M., & Rungruang, P. (2023). Mapping the knowledge base and theoretical evolution of workplace conflict outcomes: A bibliometric and qualitative review, 1972–2022. International Journal of Conflict Management, 35(2), 360–386. https://doi.org/10.1108/ijcma-02-2023-0025

Sutar, P., Kolte, G., Yamini, S., & Mathiyazhagan, K. (2024). Food supply chain resilience in the digital era: A bibliometric analysis and development of conceptual framework. Journal of Business and Industrial Marketing, 39(9), 1863–1893. https://doi.org/10.1108/jbim-10-2023-0587

Takemoto, K. (2024). All in how you ask for it: Simple black-box method for jailbreak attacks. Applied Sciences, 14(9), 3558. https://doi.org/10.3390/app14093558

Tan, W., Liao, J., Wang, Y., & Li, W. (2023). A global bibliometric analysis on Kawasaki disease research over the last 5 years (2017–2021). Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1075659

Tardin, M., Perin, M., Simões, C., & Braga, L. (2024). Organizational sustainability orientation: A review. Organization & Environment, 37(2), 298–324. https://doi.org/10.1177/10860266231226144

Velásquez, J., Franco, C., & Cadavid, L. (2023). Prompt engineering: A methodology for optimizing interactions with AI-language models in the field of engineering. Dyna, 90(230), 9–17. https://doi.org/10.15446/dyna.v90n230.111700

Vemprala, S., Bonatti, R., Bucker, A., & Kapoor, A. (2024). ChatGPT for robotics: Design principles and model abilities. IEEE Access, 12, 55682–55696. https://doi.org/10.1109/access.2024.3387941

Wang, L., Bhanushali, T., Huang, Z., Yang, H., Badami, S., & Hightow-Weidman, L. (2025). Evaluating generative AI in mental health: Systematic review of capabilities and limitations. JMIR Mental Health, 12, e70014. https://doi.org/10.2196/70014

Wang, L., Bi, W., Zhao, S., Ma, Y., Lv, L., Meng, C., … Lv, H. (2024). Investigating the impact of prompt engineering on the performance of large language models for standardizing obstetric diagnosis text: Comparative study. JMIR Formative Research, 8, e53216. https://doi.org/10.2196/53216

Wang, W., & Jacobson, S. (2022). Effects of health misinformation on misbeliefs: Understanding the moderating roles of different types of knowledge. Journal of Information, Communication and Ethics in Society, 21(1), 76–93. https://doi.org/10.1108/jices-02-2022-0015

Wei, L., Griffiths, L., & Tollefsbol, T. (2025). CeRNA networks in ischemic stroke: A bibliometric analysis. Egyptian Journal of Medical Human Genetics, 26(1). https://doi.org/10.1186/s43042-025-00687-7

Wilbers, S., Espinosa-Leal, L., Sand, R., & Reiff-Stephan, J. (2023). Overall prompting effectiveness for optimizing human-machine interaction in cyber-physical systems. Journal of Integrated Design and Process Science, 27(3–4), 211–220. https://doi.org/10.1177/10920617241295859

Wilder, E., & Walters, W. (2021). Using conventional bibliographic databases for social science research: Web of Science and Scopus are not the only options. Scholarly Assessment Reports, 3(1), 4. https://doi.org/10.29024/sar.36

Wu, H. (2024). Large language models capsule: A research analysis of in-context learning (ICL) and parameter-efficient fine-tuning (PEFT) methods. Applied and Computational Engineering, 43(1), 327–331. https://doi.org/10.54254/2755-2721/43/20230858

Wu, L., Jin, L., Li, L., Yu, K., Wu, J., Lei, Y., … He, J. (2023). An examination of Alzheimer’s disease and white matter from 1981 to 2023: A bibliometric and visual analysis. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1268566

Yan, Y., Qiu, D., & Yan, R. (2022). A quantum language-inspired tree structural text representation for semantic analysis. Mathematics, 10(6), 914. https://doi.org/10.3390/math10060914

Yang, J., Chi, Q., Wen-qiang, X., & Yu, H. (2024). Research on adversarial attack and defense of large language models. Applied and Computational Engineering, 93(1), 105–113. https://doi.org/10.54254/2755-2721/93/20240922

Yu, W., Yin, L., Zhang, C., Chen, Y., & Liu, A. (2024). Application of quantum recurrent neural network in low-resource language text classification. IEEE Transactions on Quantum Engineering, 5, 1–13. https://doi.org/10.1109/tqe.2024.3373903

Zhou, X., Pang, J., Feng, Y., Liu, F., Guo, J., Liu, W., … Shan, Z. (2022). A new method of software vulnerability detection based on a quantum neural network. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11227-3

Downloads

Published

2025-06-28

Issue

Section

Commentary

How to Cite

Verawati, N. N. S. P., & Yaqin, L. N. (2025). Charting the Future of Prompt Engineering: Critical Reflections on Methodology, Ethics, and Research Directions. International Journal of Essential Competencies in Education, 4(1), 1-14. https://doi.org/10.36312/ijece.v4i1.2908

Similar Articles

11-20 of 35

You may also start an advanced similarity search for this article.